CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4652-4662.DOI: 10.11949/0438-1157.20200653
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yangyang LIU1(),Chao SUN2,Malhi Haripal Singh1,Chongyang WEI1,Zhenzhou ZHANG2(),Weifeng TU1,2()
Received:
2020-05-25
Revised:
2020-08-14
Online:
2020-10-05
Published:
2020-10-05
Contact:
Zhenzhou ZHANG,Weifeng TU
刘洋洋1(),孙超2,Malhi Haripal Singh1,位重洋1,张振洲2(),涂维峰1,2()
通讯作者:
张振洲,涂维峰
作者简介:
刘洋洋(1995—),男,硕士研究生,基金资助:
CLC Number:
Yangyang LIU, Chao SUN, Malhi Haripal Singh, Chongyang WEI, Zhenzhou ZHANG, Weifeng TU. Effects of identities of supports on Fe-based catalyst and their consequences on activities of CO2 hydrogenation to olefins[J]. CIESC Journal, 2020, 71(10): 4652-4662.
刘洋洋, 孙超, Malhi Haripal Singh, 位重洋, 张振洲, 涂维峰. 载体对铁基催化剂结构及CO2加氢制烯烃反应性能的影响特性[J]. 化工学报, 2020, 71(10): 4652-4662.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Catalytic performance of the Fe based catalysts supported on different supports for CO2 hydrogenation [reaction conditions:320℃, 2.0 MPa, CO2/H2/Ar =1/3/3 and GHSV=9000 ml/(g·h)]
催化剂 | CO2转化率 /% | 含碳产物的选择性/C% | C2~C7烷烃和烯烃的 选择性/C% | C2~C7烃类 O/P比 | C2~C7= 时空产率/(g/(kg·h)) | |||
---|---|---|---|---|---|---|---|---|
CO | CH4 | C2~C7 | C2~C7o | C2~C7= | ||||
FeNa/SiO2 | 18.9 | 68.3 | 27.9 | 4.8 | 50.4 | 49.6 | 1.0 | 3.0 |
FeNa/Al2O3 | 38.4 | 10.0 | 34.4 | 55.6 | 50.1 | 49.9 | 1.0 | 67.8 |
FeNa/ZrO2 | 32.6 | 17.1 | 20.2 | 62.7 | 10.8 | 89.2 | 8.2 | 111.4 |
Table 1 Performance of supported Fe catalysts for CO2 hydrogenation
催化剂 | CO2转化率 /% | 含碳产物的选择性/C% | C2~C7烷烃和烯烃的 选择性/C% | C2~C7烃类 O/P比 | C2~C7= 时空产率/(g/(kg·h)) | |||
---|---|---|---|---|---|---|---|---|
CO | CH4 | C2~C7 | C2~C7o | C2~C7= | ||||
FeNa/SiO2 | 18.9 | 68.3 | 27.9 | 4.8 | 50.4 | 49.6 | 1.0 | 3.0 |
FeNa/Al2O3 | 38.4 | 10.0 | 34.4 | 55.6 | 50.1 | 49.9 | 1.0 | 67.8 |
FeNa/ZrO2 | 32.6 | 17.1 | 20.2 | 62.7 | 10.8 | 89.2 | 8.2 | 111.4 |
催化剂 | BET / (m2/g)① | 总孔容v/ (cm3/g)② | 平均孔径d /nm② | Fe2O3尺寸/nm③ |
---|---|---|---|---|
SiO2 | 311.66 | 1.09 | 10.96 | — |
Al2O3 | 150.44 | 0.57 | 11.98 | — |
ZrO2 | 4.39 | 0.04 | 25.87 | — |
FeNa/SiO2 | 167.43 | 0.51 | 9.30 | 16.7 |
FeNa/Al2O3 | 140.31 | 0.38 | 8.30 | 15.9 |
FeNa/ZrO2 | 14.20 | 0.08 | 18.82 | 19.0 |
Table 2 Physicochemical properties of supports and supported Fe catalysts
催化剂 | BET / (m2/g)① | 总孔容v/ (cm3/g)② | 平均孔径d /nm② | Fe2O3尺寸/nm③ |
---|---|---|---|---|
SiO2 | 311.66 | 1.09 | 10.96 | — |
Al2O3 | 150.44 | 0.57 | 11.98 | — |
ZrO2 | 4.39 | 0.04 | 25.87 | — |
FeNa/SiO2 | 167.43 | 0.51 | 9.30 | 16.7 |
FeNa/Al2O3 | 140.31 | 0.38 | 8.30 | 15.9 |
FeNa/ZrO2 | 14.20 | 0.08 | 18.82 | 19.0 |
1 | 白雪楠, 白昕, 尤慧君. 中国碳交易市场发展现状及问题分析[J]. 中外企业家, 2020, 14: 100. |
Bai X N, Bai X, You H J. Development status and problems of carbon trading market in China [J]. Chinese and Foreign Entrepreneurs, 2020, 14: 100. | |
2 | 巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285. |
Gong J L. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal, 2017, 68(4): 1282-1285. | |
3 | 靳治良, 钱玲, 吕功煊. 二氧化碳化学—现状及展望[J]. 化学进展, 2010, 22(6): 1102-1115. |
Jin Z L, Qian L, Lyu G X. CO2 Chemistry—actuality and expectation[J]. Progress in Chemistry, 2010, 22(6): 1102-1115. | |
4 | Wang S, Xi C. Recent advances in nucleophile-triggered CO2-incorporated cyclization leading to heterocycles[J]. Chem. Soc. Rev., 2019, 48(1): 382-404. |
5 | 成康, 张庆红, 康金灿, 等. 二氧化碳直接制备高值化学品中的接力催化方法[J]. 中国科学: 化学, 2020, 50(7): 743-755. |
Cheng K, Zhang Q H, Kang J C, et al. Relay catalysis in the direct conversion of carbon dioxide to high-value chemicals[J]. Sci. Sin. Chim., 2020, 50(7): 743-755. | |
6 | 陈倩倩, 顾宇, 唐志永, 等. 以二氧化碳规模化利用技术为核心的碳减排方案[J]. 中国科学院院刊, 2019, 34(4): 478-487. |
Chen Q Q, Gu Y, Tang Z Y, et al. Carbon dioxide sizable utilization technology based carbon reduction solutions[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(4): 478-487. | |
7 | 金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1): 3-8. |
Jin Y, Zhou Y C, Hu S Y. Discussion on development of coal chemical industry using low-carbon concept[J]. CIESC Journal, 2012, 63(1): 3-8. | |
8 | Yang H Y, Zhang C, Gao P, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catalysis Science & Technology, 2017, 7(20): 4580-4598. |
9 | 高新华, 王康洲, 张建利, 等. CO/CO2催化加氢双功能催化剂新进展[J]. 石油学报(石油加工), 2019, 35(6): 1228-1238. |
Gao X H, Wang K Z, Zhang J L, et al. Recent advances in bifunctional catalysts for hydrogenation of CO/CO2[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2019, 35(6): 1228-1238. | |
10 | 高鹏, 崔勖, 钟良枢, 等. CO/CO2加氢高选择性合成化学品和液体燃料[J]. 化工进展, 2019, 38(1): 183-195. |
Gao P, Cui X, Zhang L S, et al. CO/CO2 hydrogenation to chemicals and liquid fuels with high selectivity[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 183-195. | |
11 | Jiao F, Li J J, Pan X L, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351: 1065-1068. |
12 |
Wei C Y, Tu W F, Jia L Y, et al. The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins[J]. Applied Surface Science, 2020, DOI: 10.1016/j.apsusc.2020.146622.
DOI |
13 | 张玉龙, 邵光印, 张征湃, 等. 活化气氛对CO2加氢制取低碳烯烃Fe-K催化剂构-效关系[J]. 化工学报, 2018, 69(2): 690-698. |
Zhang Y L, Shao G Y, Zhang Z P, et al. Activation atmospheres on structure-performance relationship of K-promoted Fe catalysts for lower olefin synthesis from CO2 hydrogenation[J]. CIESC Journal, 2018, 69(2): 690-698. | |
14 | Liang B L, Sun T, Ma J G, et al. Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins[J]. Catal. Sci. Technol., 2019, 9 (2): 456-464. |
15 | Zhang Z Z, Wei C Y, Jia L Y, et al. Insights into the regulation of FeNa catalysts modified by Mn promoter and their tuning effect on the hydrogenation of CO2 to light olefins[J]. Journal of Catalysis, 2020, 390: 12-22. |
16 | Liu J H, Zhang A F, Jiang X, et al. Overcoating the surface of Fe-based catalyst with ZnO and nitrogen-doped carbon toward high selectivity of light olefins in CO2 hydrogenation[J]. Ind. Eng. Chem. Res, 2019, 58 (10): 4017-4023. |
17 | Cheng K, Virginie M, Ordomsky V V, et al. Pore size effects in high-temperature Fischer–Tropsch synthesis over supported iron catalysts[J]. Journal of Catalysis, 2015, 328: 139-150. |
18 | Numpilai T, Chanlek N, Poo-Arporn Y, et al. Pore size effects on physicochemical properties of Fe-Co/K-Al2O3 catalysts and their catalytic activity in CO2 hydrogenation to light olefins[J]. Applied Surface Science, 2019, 483: 581-592. |
19 | 张俊, 张征湃, 苏俊杰, 等. 载体碱性对Fe基催化剂费-托合成反应的影响[J]. 化工学报, 2016, 67(2): 549-556. |
Zhang J, Zhang Z P, Su J J, et al. Effect of support basicity on iron based catalysts for Fischer-Tropsch synthesis[J]. CIESC Journal, 2016, 67(2): 549-556. | |
20 | Wang J J, You Z Y, Zhang Q H, et al. Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts[J]. Catalysis Today, 2013, 215: 186-193. |
21 | Gu H, Ding J, Zhong Q, et al. Promotion of surface oxygen vacancies on the light olefins synthesis from catalytic CO2 hydrogenation over Fe–K/ZrO2 catalysts[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11808-11816. |
22 | Lu J Z, Yang L J, Xu B L, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer–Tropsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2): 613-621. |
23 | Su X J, Zhang J L, Fan S B, et al. Effect of preparation of Fe-Zr-K catalyst on the product distribution of CO2 hydrogenation[J]. RSC Advances, 2015, 5(98): 80196-80202. |
24 | Torres Galvis H M, Bitter J H, Khare C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335: 835-838. |
25 | Park J Y, Lee Y J, Khanna P K, et al. Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts: effect of particle size of iron oxide[J]. Journal of Molecular Catalysis A: Chemical, 2010, 323(1/2): 84-90. |
26 | Lee Y H, Lee D W, Kim H, et al. Fe–Zn catalysts for the production of high-calorie synthetic natural gas[J]. Fuel, 2015, 159: 259-268. |
27 | Jin Y, Datye A K. Phase transformations in iron Fischer–Tropsch catalysts during temperature-programmed reduction[J]. Journal of Catalysis, 2000, 196(1): 8-17. |
28 | Li S Z, Li A W, Krishnamoorthy S, et al. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer–Tropsch synthesis catalysts[J]. Catalysis Letters, 2001, 77(4): 197-205. |
29 | Zhang C H, Wan H J, Yang Y, et al. Study on the iron–silica interaction of a co-precipitated Fe/SiO2 Fischer–Tropsch synthesis catalyst[J]. Catalysis Communications, 2006, 7(9): 733-738. |
30 | Yuen S, Kubsh J E, Dumesic J A, et al. Metal oxide-support interactions in silica-supported iron oxide catalysts probed by nitric oxide adsorption[J]. The Journal of Physical Chemistry, 1982, 86(15): 3022-3032. |
31 | Xie T Z, Wang J Y, Ding F S, et al. CO2 hydrogenation to hydrocarbons over alumina-supported iron catalyst: effect of support pore size[J]. Journal of CO2 Utilization, 2017, 19: 202-208. |
32 | Wu J H, Wang L C, Yang X, et al. Support effect of the Fe/BN catalyst on Fischer–Tropsch performances: role of the surface B-O defect[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2805-2810. |
33 | Zhang Y L, Cao C X, Zhang C, et al. The study of structure-performance relationship of iron catalyst during a full life cycle for CO2 hydrogenation[J]. Journal of Catalysis, 2019, 378: 51-62. |
34 | Pham T H, Qi Y Y, Yang J, et al. Insights into Hägg iron-carbide-catalyzed Fischer–Tropsch synthesis: suppression of CH4 formation and enhancement of C–C coupling on χ-Fe5C2 (510)[J]. ACS Catalysis, 2015, 5(4): 2203-2208. |
35 | Moodley D J, van de loosdrecht J, Saib A M, et al. Carbon deposition as a deactivation mechanism of cobalt-based Fischer–Tropsch synthesis catalysts under realistic conditions[J]. Applied Catalysis A: General, 2009, 354(1/2): 102-110. |
36 | Zhang Y L, Fu D D, Liu X L, et al. Operando spectroscopic study of dynamic structure of iron oxide catalysts during CO2 hydrogenation[J]. ChemCatChem, 2018, 10(6): 1272-1276. |
37 | Zhang Z P, Zhang J, Wang X, et al. Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins[J]. Journal of Catalysis, 2018, 365: 71-85. |
38 | Thomsen C, Reich S. Double resonant Raman scattering in graphite[J]. Physical Review Letters, 2000, 85(24): 5214-5217. |
39 | Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics, 1970, 53(3): 1126-1130. |
40 | Gruver V, Young R, Engman J, et al. The role of accumulated carbon in deactivating cobalt catalysts during FT synthesis in a slurry-bubble-column reactor[J]. American Chemical Society, Division of Petroleum Chemistry, Preprints, 2005, 50: 164-166. |
41 | Solis-Garcia A, Louvier-Hernandez J F, Almendarez-Camarillo A, et al. Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni[J]. Applied Catalysis B: Environmental, 2017, 218: 611-620. |
42 | Takano H, Kirihata Y, Izumiya K, et al. Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation[J]. Applied Surface Science, 2016, 388: 653-663. |
43 | Szamyi J, Kwak J H. Dissecting the steps of CO2 reduction(1). The interaction of CO and CO2 with γ-Al2O3: an in situ FTIR study[J]. Phys Chem Chem Phys, 2014, 16(29): 15117-15125. |
44 | Proano L, Tello E, Arellano-Trevino M A, et al. In-situ DRIFTS study of two-step CO2 capture and catalytic methanation over Ru, "Na2O"/Al2O3 dual functional material[J]. Applied Surface Science, 2019, 479: 25-30. |
45 | Szanyi J, Kwak J H. Dissecting the steps of CO2 reduction(2). The interaction of CO and CO2 with Pd/γ-Al2O3: an in situ FTIR study[J]. Phys. Chem. Chem. Phys., 2014, 16(29): 15126-15138. |
46 | Guo J Z, Hou Z Y, Gao J, et al. DRIFTS study on adsorption and activation of CH4 and CO2 over Ni/SiO2 catalyst with various Ni particle sizes[J]. Chinese Journal of Catalysis, 2007, 28(1): 22-26. |
47 | Chang K, Ordomsky V V, Legras B, et al. Sodium-promoted iron catalysts prepared on different supports for high temperature Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2015, 502: 204-214. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[5] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[6] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[7] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[8] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[9] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[10] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[11] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[12] | Yifan JIANG, Lei LIU, Yao ZHAO, Yanjun DAI. Research on the performance of liquid cooling system for UVLED optical components [J]. CIESC Journal, 2023, 74(S1): 154-160. |
[13] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[14] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[15] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||