CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 278-294.DOI: 10.11949/0438-1157.20200880
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
ZHANG Yi1(),ZHANG Guanmin1(),LIU Lei1,LIANG Kai1,QU Xiaohang1,2,TIAN Maocheng1
Received:
2020-07-03
Revised:
2020-10-16
Online:
2021-06-20
Published:
2021-06-20
Contact:
ZHANG Guanmin
张毅1(),张冠敏1(),刘磊1,梁凯1,屈晓航1,2,田茂诚1
通讯作者:
张冠敏
作者简介:
张毅(1988—),男,博士研究生,基金资助:
CLC Number:
ZHANG Yi, ZHANG Guanmin, LIU Lei, LIANG Kai, QU Xiaohang, TIAN Maocheng. Gas-liquid falling film flow characteristics on surface of multi-row plane finned-tube heat exchanger: a 3D numerical study[J]. CIESC Journal, 2021, 72(S1): 278-294.
张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
Add to citation manager EndNote|Ris|BibTeX
1 | Dong J K, Zhang L, Deng S M, et al. An experimental study on a novel radiant-convective heating system based on air source heat pump [J]. Energy and Buildings, 2018, 158: 812-821. |
2 | Zhang Y, Zhang G M, Zhang A Q, et al. Frosting phenomenon and frost-free technology of outdoor air heat exchanger for an air-source heat pump system in China: an analysis and review [J]. Energies, 2018, 11(10): 2642. |
3 | Zhang Q L, Zhang L, Nie J Z, et al. Techno-economic analysis of air source heat pump applied for space heating in Northern China [J]. Applied Energy, 2017, 207: 533-542. |
4 | Wu P, Wang Z C, Li X F, et al. Energy-saving analysis of air source heat pump integrated with a water storage tank for heating applications [J]. Building and Environment, 2020, 180: 107029. |
5 | 张毅, 张冠敏, 张莉莉, 等. 空气源热泵结霜机理及除霜/抑霜技术研究进展 [J]. 制冷学报, 2018, 39(5): 10-21, 46. |
Zhang Y, Zhang G M, Zhang L L, et al. Research progress on frost formation mechanism of air-source heat pump and its defrosting/anti-frosting technology [J]. Journal of Refrigeration, 2018, 39(5): 10-21, 46. | |
6 | Zhang L, Jiang Y Q, Dong J K, et al. An experimental study on the effects of frosting conditions on frost distribution and growth on finned tube heat exchangers [J]. International Journal of Heat and Mass Transfer, 2019, 128: 748-761. |
7 | Xu X G, Fang Z Q, Wang Z Q. Climatic division based on frosting characteristics of air source heat pumps [J]. Energy and Buildings, 2020, 224: 110219. |
8 | Song M J, Deng S M, Dang C B, et al. Review on improvement for air source heat pump units during frosting and defrosting [J]. Applied Energy, 2018, 211: 1150-1170. |
9 | Amer M, Wang C C. Review of defrosting methods [J]. Renewable and Sustainable Energy Reviews, 2017, 73: 53-74. |
10 | Sheng W, Liu P P, Dang C B, et al. Review of restraint frost method on cold surface [J]. Renewable and Sustainable Energy Reviews, 2017, 79: 806-813. |
11 | 张毅, 张冠敏, 冷学礼, 等. 无霜空气源热泵技术研究进展 [J]. 化工学报, 2020, 71(12): 5400-5419. |
Zhang Y, Zhang G M, Leng X L, et al. Research progress on frost-free air source heat pump technology [J]. CIESC Journal, 2020, 71(12): 5400-5419. | |
12 | Qu M L, Zhang R, Chen J B, et al. Experimental analysis of heat coupling during TES based reverse cycle defrosting method for cascade air source heat pumps [J]. Renewable Energy, 2020, 147: 35-42. |
13 | Qu M L, Tang Y B, Zhang T Y, et al. Experimental investigation on the multi-mode heat discharge process of a PCM heat exchanger during TES based reverse cycle defrosting using in cascade air source heat pumps [J]. Applied Thermal Engineering, 2019, 151: 154-162. |
14 | Song M J, Xu X G, Mao N, et al. Energy transfer procession in an air source heat pump unit during defrosting [J]. Applied Energy, 2017, 204: 679-689. |
15 | Zhang L, Fujinawa T, Saikawa M. A new method for preventing air-source heat pump water heaters from frosting [J]. International Journal of Refrigeration, 2012, 35(5): 1327-1334. |
16 | Wang Z H, Li G C, Wang F H, et al. Techno-economic evaluation of a frost-free air source heat pump water heater [J]. Sustainable Cities and Society, 2020, 57: 102102. |
17 | Su W, Li H, Sun B, et al. Performance investigation on a frost-free air source heat pump system employing liquid desiccant dehumidification and compressor-assisted regeneration based on exergy and exergoeconomic analysis [J]. Energy Conversion and Management, 2019, 183: 167-181. |
18 | 冯荣, 孟欣, 邓建平, 等. 冷却塔逆用吸热做热源塔技术研究现状[J]. 化工进展, 2018, 37(11): 4135-4142. |
Feng R, Meng X, Deng J P, et al. Research progress on cooling tower reversibly used as heat source tower [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4135-4142. | |
19 | Huang S F, Zuo W D, Lu H X, et al. Performance comparison of a heating tower heat pump and an air-source heat pump: a comprehensive modeling and simulation study [J]. Energy Conversion and Management, 2019, 180: 1039-1054. |
20 | Jiang Y Q, Fu H Y, Yao Y, et al. Experimental study on concentration change of spray solution used for a novel non-frosting air source heat pump system [J]. Energy and Buildings, 2014, 68: 707-712. |
21 | 付慧影, 姜益强, 姚杨, 等. 喷淋溶液对无霜空气源热泵系统特性的影响 [J]. 化工学报, 2012, 63: 193-198. |
Fu H Y, Jiang Y Q, Yao Y, et al. Influence of spray solution on novel non-frosting air source heat pump system performance [J]. CIESC Journal, 2012, 63: 193-198. | |
22 | Lu J, Li W Y, Li Y C, et al. Numerical study on heat and mass transfer characteristics of the counter-flow heat-source tower (CFHST) [J]. Energy and Buildings, 2017, 145: 318-330. |
23 | Cheng J L, Li N P, Wang K. Study of heat-source-tower heat pump system efficiency [J]. Procedia Engineering, 2015, 121: 915-921. |
24 | Cheng J L, Zou S H, Chen S Q. Application research on the closed-loop heat-source-tower heat pump air conditioning system in hot-summer and cold-winter zone [J]. Procedia Engineering, 2015, 121: 922-929. |
25 | 贺志明, 李念平, 成剑林, 等. 喷淋工况下闭式热源塔传热特性[J]. 土木建筑与环境工程, 2015, 37(1): 35-39, 54. |
He Z M, Li N P, Cheng J L, et al. Performance of closed heat source tower under spraying conditions [J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(1): 35-39, 54. | |
26 | Song P Y, Wang B L, Li X T, et al. Experimental research on heat and mass transfer characteristics of cross-flow closed-type heat-source tower [J]. Applied Thermal Engineering, 2018, 135: 289-303. |
27 | 李胜兵, 李念平, 崔海蛟, 等. 低温高湿工况下热源塔换热特性试验研究[J]. 科学技术与工程, 2017, 17(5): 271-275. |
Li S B, Li N P, Cui H J, et al. Experimental study on heat transfer characteristics of heat source tower under low temperature and high humidity conditions [J]. Science Technology and Engineering, 2017, 17(5): 271-275. | |
28 | 李腾波, 李念平, 张楠. 冬季喷淋工况下闭式热源塔换热性能试验[J]. 暖通空调, 2018, 48(8): 49-55. |
Li T B, Li N P, Zhang N. Experiments on heat transfer performances of closed heat tower under winter spray conditions [J]. Heating Ventilating & Air Conditioning, 2018, 48(8): 49-55. | |
29 | 李峥嵘, 孙佳利, 张东凯. 结霜工况下闭式热源塔内翅片间距的模拟优化[J]. 建筑热能通风空调, 2017, 36(10): 1-4, 18. |
Li Z R, Sun J L, Zhang D K. Simulation and optimization of fin pitch in closed heat source tower under frost condition [J]. Building Energy & Environment, 2017, 36(10): 1-4, 18. | |
30 | 夏燚, 孙立镖, 梁彩华, 等. 具有预凝功能的新型热源塔的构建及模拟[J]. 东南大学学报(自然科学版), 2015, 45(6): 1108-1113. |
Xia Y, Sun L B, Liang C H, et al. Construction and simulation of new-type heat-source tower with pre-condensation function [J]. Journal of Southeast University (Natural Science Edition), 2015, 45(6): 1108-1113. | |
31 | Liang C H, Wen X T, Liu C X, et al. Performance analysis and experimental study of heat-source tower solution regeneration [J]. Energy Conversion and Management, 2014, 85: 596-602. |
32 | 文先太, 梁彩华, 刘成兴, 等. 基于空气能量回收的热源塔溶液再生系统节能性分析[J]. 化工学报, 2011, 62(11): 3242-3247. |
Wen X T, Liang C H, Liu C X, et al. Energy-saving analysis of solution regeneration in heat-source tower based on recovery of air energy [J]. CIESC Journal, 2011, 62(11): 3242-3247. | |
33 | 李敏霞, 靳亚楠, 王磊. 热源塔热泵系统冷冻液的测试与选择[J]. 化学工程, 2017, 45(5): 46-50, 78. |
Li M X, Jin Y N, Wang L. Testing and choosing of refrigerating fluids in heat pump system of heat-source tower [J]. Chemical Engineering (China), 2017, 45(5): 46-50, 78. | |
34 | 陈琦, 李念平, 成剑林, 等. 闭式热源塔换热性能试验研究[J]. 暖通空调, 2015, 45(12): 68-71. |
Chen Q, Li N P, Cheng J L, et al. Experimental study on heat transfer performance of closed-type heat source towers [J]. Heating Ventilating & Air Conditioning, 2015, 45(12): 68-71. | |
35 | Song P Y, Xiao H S, Shi W X, et al. Experimental investigation on closed-type heating tower using glycerol solution [J]. International Journal of Refrigeration, 2019, 99: 272-287. |
36 | Zendehboudi A, Song P Y, Li X T. Performance investigation of the cross-flow closed-type heat-source tower using experiments and an adaptive neuro-fuzzy inference system model [J]. Energy and Buildings, 2019, 183: 340-355. |
37 | Giannetti N, Rocchetti A, Yamaguchi S, et al. Heat and mass transfer coefficients of falling-film absorption on a partially wetted horizontal tube [J]. International Journal of Thermal Sciences, 2018, 126: 56-66. |
38 | Rahmah A S, Elsayed M M, Al-Najem N M. A numerical investigation for the heat and mass transfer between parallel flow of air and desiccant falling film in a fin-tube arrangement [J]. HVAC&R Research, 2000, 6(4): 307-323. |
39 | Ali A, Vafai K, Khaled A R A. Analysis of heat and mass transfer between air and falling film in a cross flow configuration [J]. International Journal of Heat and Mass Transfer, 2004, 47(4): 743-755. |
40 | 王铁军. 喷淋蒸发翅管式冷凝器传热传质研究[J]. 低温与超导, 2006, 34(4): 299-302. |
Wang T J. The study on heat and mass transfer of the fin-and-tube condenser with spray evaporating [J]. Cryogenics and Superconductivity, 2006, 34(4): 299-302. | |
41 | 刘国兵, 惠宇, 王玉璋. 气液降膜流动传热传质研究的综述[J]. 燃气轮机技术, 2011, 24(3): 13-17, 31. |
Liu G B, Hui Y, Wang Y Z. A survey of the heat and mass transfer in the gas-liquid falling film [J]. Gas Turbine Technology, 2011, 24(3): 13-17, 31. | |
42 | Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension [J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
43 | Woerlee G F, Berends J, Olujic Z, et al. A comprehensive model for the pressure drop in vertical pipes and packed columns [J]. Chemical Engineering Journal, 2001, 84(3): 367-379. |
44 | Stephan M, Mayinger F. Experimental and analytical study of countercurrent flow limitation in vertical gas/liquid flows [J]. Chemical Engineering & Technology, 1992, 15(1): 51-62. |
45 | Wallis G B. Annular two-phase flow (Ⅱ): Additional effects [J]. Journal of Basic Engineering, 1970, 92(1): 73-81. |
46 | Yu Y Q, Cheng X. Three-dimensional simulation on behavior of water film flow with and without shear stress on water-air interface [J]. International Journal of Heat and Mass Transfer, 2014, 79: 561-572. |
47 | Brauner N, Maron D M. Modeling of wavy flow in inclined thin films [J]. Chemical Engineering Science, 1983, 38(5): 775-788. |
48 | Nusselt W. Die oberflachenkondensation des wasserdamphes [J]. Zeit. Ver. D. Ing., 1916, 60: 541-569 |
49 | Takahama H, Kato S. Longitudinal flow characteristics of vertically falling liquid films without concurrent gas flow [J]. International Journal of Multiphase Flow, 1980, 6(3): 203-215. |
50 | Tang Z W, Yan X K, Jiang Z Y. Experimental study on surface wave and film breakdown of falling liquid film flow [J]. Heat and Mass Transfer, 2009, 45(6): 673-677. |
51 | Karapantsios T D, Paras S V, Karabelas A J. Statistical characteristics of free falling films at high Reynolds numbers [J]. International Journal of Multiphase Flow, 1989, 15(1): 1-21. |
52 | 黄磊, 李明春, 陈冬, 等. 降膜流动及膜破裂特性的三维数值模拟[J]. 能源工程, 2015, (2): 13-20. |
Huang L, Li M C, Chen D, et al. 3-D numerical simulation of falling film flow and film break-up characteristic [J]. Energy Engineering, 2015, (2): 13-20. | |
53 | 暴凯, 胡珀, 黄兴冠. 可变角度大平板降膜流动特性的试验研究[J]. 核科学与工程, 2015, 35(2): 379-384. |
Bao K, Hu P, Huang X G. Experimental study of water film flow characteristics on the rotatable large flat plate [J]. Nuclear Science and Engineering, 2015, 35(2): 379-384. | |
54 | Min J K, Park I S. Numerical study for laminar wavy motions of liquid film flow on vertical wall [J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3256-3266. |
55 | 万智华, 厉彦忠, 陈宏振. 竖直通道内降膜流动数值模拟研究[J]. 制冷学报, 2017, 38(6): 80-86. |
Wan Z H, Li Y Z, Chen H Z. Numerical simulation of falling film flow in vertical channel [J]. Journal of Refrigeration, 2017, 38(6): 80-86. | |
56 | Lu H, Lu L, Luo Y M, et al. Investigation on the dynamic characteristics of the counter-current flow for liquid desiccant dehumidification [J]. Energy, 2016, 101: 229-238. |
57 | Yang L P, Song J J, Zhang L H, et al. Microscopic mechanisms of wave effect on heat transfer enhancement in condensate films [J]. Chemical Engineering Science, 2019, 204: 220-227. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||