CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1264-1274.DOI: 10.11949/0438-1157.20200894
• Thermodynamics • Previous Articles Next Articles
ZHANG Yingying(),GUO Shuna,SONG Shuailong,YANG Xuzhao,WU Shide,TIAN Junfeng,HAN Guanglu,ZHANG Jingjing,LI Yakun,ZHANG Jianqiang
Received:
2020-07-06
Revised:
2020-11-12
Online:
2021-03-05
Published:
2021-03-05
Contact:
ZHANG Yingying
张盈盈(),郭淑娜,宋帅龙,杨许召,吴诗德,田俊峰,韩光鲁,张静静,李亚坤,张建强
通讯作者:
张盈盈
作者简介:
张盈盈(1985—),女,博士,讲师,基金资助:
CLC Number:
ZHANG Yingying, GUO Shuna, SONG Shuailong, YANG Xuzhao, WU Shide, TIAN Junfeng, HAN Guanglu, ZHANG Jingjing, LI Yakun, ZHANG Jianqiang. Thermodynamic analysis for NH3 separation using ionic liquids/deep eutectic solvents[J]. CIESC Journal, 2021, 72(3): 1264-1274.
张盈盈, 郭淑娜, 宋帅龙, 杨许召, 吴诗德, 田俊峰, 韩光鲁, 张静静, 李亚坤, 张建强. 离子液体/低共熔溶剂用于NH3分离过程的热力学分析[J]. 化工学报, 2021, 72(3): 1264-1274.
Add to citation manager EndNote|Ris|BibTeX
氨气(NH3) | 氢气(H2) | 氮气(N2) | 甲烷(CH4) |
---|---|---|---|
43.8%~50% | 25%~36.3% | 9.5%~15.8% | 3.6%~9.2% |
Table 1 The composition of synthetic ammonia purge gas[15-16]
氨气(NH3) | 氢气(H2) | 氮气(N2) | 甲烷(CH4) |
---|---|---|---|
43.8%~50% | 25%~36.3% | 9.5%~15.8% | 3.6%~9.2% |
离子液体/低共熔溶剂 | M/ (g?mol-1) | ρ/(g?cm-3) | cp/(J?mol-1?K-1) | Tc/K | Pc/bar | |||
---|---|---|---|---|---|---|---|---|
T/K | P/bar | |||||||
[Emim][BF4] | 197.97 | 313.15~333.15 | 1.2~6.3 | 0.084~0.526[ | 1.280[ | 311.5~316.8[ | 585.3[ | 23.60[ |
[Bmim][BF4] | 226.02 | 313.15~333.15 | 0.7~8.3 | 0.061~0.562[ | 1.201[ | 371.7~377.7[ | 632.3[ | 20.40[ |
[Hmim][BF4] | 254.08 | 313.15~333.15 | 1.4~7.1 | 0.128~0.624[ | 1.145[ | 436.2~444.0[ | 679.1[ | 17.90[ |
[Omim][BF4] | 282.13 | 313.15~333.15 | 1.0~6.0 | 0.132~0.644[ | 1.104[ | 505.4~514.2[ | 726.1[ | 16.00[ |
[Bmim][PF6] | 284.18 | 298.60~347.20 | 1.8~7.7 | 0.253~0.737 [ | 1.368[ | 402.0~409.0[ | 708.9[ | 17.30[ |
ChCl/urea(1∶2) | 86.58 | 313.20~333.20 | 0.1~3.0 | 0.017~0.241[ | 1.206[ | 182.2~184.5[ | 644.4[ | 49.54[ |
ChCl/gly(1∶2) | 107.94 | 313.15~333.15 | 0.1~5.7 | 0.030~0.556[ | 1.192[ | 239.1~243.5[ | 680.7[ | 33.46[ |
ChCl/EG(1∶2) | 87.92 | 313.15~333.15 | 0.1~5.5 | 0.035~0.511[ | 1.117[ | 192.2~196.4[ | 602.0[ | 40.99[ |
Table 2 The molecular weight, NH3 solubility, density, isobaric heat capacity and critical properties of 8 ILs/DESs
离子液体/低共熔溶剂 | M/ (g?mol-1) | ρ/(g?cm-3) | cp/(J?mol-1?K-1) | Tc/K | Pc/bar | |||
---|---|---|---|---|---|---|---|---|
T/K | P/bar | |||||||
[Emim][BF4] | 197.97 | 313.15~333.15 | 1.2~6.3 | 0.084~0.526[ | 1.280[ | 311.5~316.8[ | 585.3[ | 23.60[ |
[Bmim][BF4] | 226.02 | 313.15~333.15 | 0.7~8.3 | 0.061~0.562[ | 1.201[ | 371.7~377.7[ | 632.3[ | 20.40[ |
[Hmim][BF4] | 254.08 | 313.15~333.15 | 1.4~7.1 | 0.128~0.624[ | 1.145[ | 436.2~444.0[ | 679.1[ | 17.90[ |
[Omim][BF4] | 282.13 | 313.15~333.15 | 1.0~6.0 | 0.132~0.644[ | 1.104[ | 505.4~514.2[ | 726.1[ | 16.00[ |
[Bmim][PF6] | 284.18 | 298.60~347.20 | 1.8~7.7 | 0.253~0.737 [ | 1.368[ | 402.0~409.0[ | 708.9[ | 17.30[ |
ChCl/urea(1∶2) | 86.58 | 313.20~333.20 | 0.1~3.0 | 0.017~0.241[ | 1.206[ | 182.2~184.5[ | 644.4[ | 49.54[ |
ChCl/gly(1∶2) | 107.94 | 313.15~333.15 | 0.1~5.7 | 0.030~0.556[ | 1.192[ | 239.1~243.5[ | 680.7[ | 33.46[ |
ChCl/EG(1∶2) | 87.92 | 313.15~333.15 | 0.1~5.5 | 0.035~0.511[ | 1.117[ | 192.2~196.4[ | 602.0[ | 40.99[ |
离子液体/低共熔溶剂 | Ts/K | Pa/bar | mIL/DES/(g?g-1) | Qtot/(GJ?t-1) |
---|---|---|---|---|
[Bmim][BF4] | 299.15~314.85 | 3.06~8.58 | 25.75~269.40 | 1.54~2.29 |
[Hmim][BF4] | 299.15~319.15 | 3.29~11.31 | 21.05~264.70 | 1.39~1.85 |
[Omim][BF4] | 299.15~319.15 | 3.31~11.06 | 20.12~257.05 | 1.05~1.91 |
ChCl/EG(1∶2) | 314.85~319.15 | 2.34~2.38 | 15.18~17.72 | 2.37~2.40 |
Table 3 The desorption temperature, absorption pressure, amounts of absorbents needed and total energy uses of the screened ILs/DESs
离子液体/低共熔溶剂 | Ts/K | Pa/bar | mIL/DES/(g?g-1) | Qtot/(GJ?t-1) |
---|---|---|---|---|
[Bmim][BF4] | 299.15~314.85 | 3.06~8.58 | 25.75~269.40 | 1.54~2.29 |
[Hmim][BF4] | 299.15~319.15 | 3.29~11.31 | 21.05~264.70 | 1.39~1.85 |
[Omim][BF4] | 299.15~319.15 | 3.31~11.06 | 20.12~257.05 | 1.05~1.91 |
ChCl/EG(1∶2) | 314.85~319.15 | 2.34~2.38 | 15.18~17.72 | 2.37~2.40 |
参数 | 数值 |
---|---|
分子量MIL/(g?mol-1) | 18 |
溶解度 | 0.253~0.290[ |
密度ρ/(g?cm-3) | 0.997[ |
比热容cp/(J?mol-1?K-1) | 75.3~75.4[ |
Table 4 The molecular weight, density, NH3 solubility and isobaric heat capacity of water
参数 | 数值 |
---|---|
分子量MIL/(g?mol-1) | 18 |
溶解度 | 0.253~0.290[ |
密度ρ/(g?cm-3) | 0.997[ |
比热容cp/(J?mol-1?K-1) | 75.3~75.4[ |
体系 | Pa | mIL/DES | Qtot | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | AARD/% | c×10-5 | d | e | AARD/% | f | g | h×103 | AARD/% | |
[Emim][BF4] | 191.99 | -78.94 | 4.73 | 25.84 | 0.27 | -6.96 | 0.61 | -17.07 | 921.53 | -12.44 | 1.38 |
[Bmim][BF4] | 272.41 | -155.94 | 5.05 | 9.02 | 0.36 | -9.30 | 0.03 | -7.70 | 527.65 | -9.03 | 3.20 |
[Hmim][BF4] | 309.51 | -224.34 | 5.48 | -1.76 | 0.43 | -10.50 | 0.09 | -3.60 | 310.54 | -6.69 | 6.96 |
[Omim][BF4] | 299.36 | -262.65 | 5.77 | -7.78 | 0.39 | -11.70 | 0.11 | -1.55 | 163.35 | -4.31 | 8.03 |
[Bmim][PF6] | 340.73 | -215.43 | 5.51 | -7.09 | 0.48 | -11.11 | 0.08 | -2.48 | 232.74 | -5.47 | 5.60 |
ChCl/urea(1∶2) | 31.58 | -0.29 | 0.14 | 0.83 | -0.01 | 23.59 | 7.47 | -9.35 | 253.40 | -1.71 | 2.47 |
ChCl/gly(1∶2) | 6.82 | -298.99 | 3.28 | 2.02 | |||||||
ChCl/EG(1∶2) | 11.76 | -365.08 | 2.84 | 2.10 |
Table 5 The fitting coefficients and average absolute relative deviation of the law
体系 | Pa | mIL/DES | Qtot | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | AARD/% | c×10-5 | d | e | AARD/% | f | g | h×103 | AARD/% | |
[Emim][BF4] | 191.99 | -78.94 | 4.73 | 25.84 | 0.27 | -6.96 | 0.61 | -17.07 | 921.53 | -12.44 | 1.38 |
[Bmim][BF4] | 272.41 | -155.94 | 5.05 | 9.02 | 0.36 | -9.30 | 0.03 | -7.70 | 527.65 | -9.03 | 3.20 |
[Hmim][BF4] | 309.51 | -224.34 | 5.48 | -1.76 | 0.43 | -10.50 | 0.09 | -3.60 | 310.54 | -6.69 | 6.96 |
[Omim][BF4] | 299.36 | -262.65 | 5.77 | -7.78 | 0.39 | -11.70 | 0.11 | -1.55 | 163.35 | -4.31 | 8.03 |
[Bmim][PF6] | 340.73 | -215.43 | 5.51 | -7.09 | 0.48 | -11.11 | 0.08 | -2.48 | 232.74 | -5.47 | 5.60 |
ChCl/urea(1∶2) | 31.58 | -0.29 | 0.14 | 0.83 | -0.01 | 23.59 | 7.47 | -9.35 | 253.40 | -1.71 | 2.47 |
ChCl/gly(1∶2) | 6.82 | -298.99 | 3.28 | 2.02 | |||||||
ChCl/EG(1∶2) | 11.76 | -365.08 | 2.84 | 2.10 |
25 | Duan X Z, Gao B, Zhang C, et al. Solubility and thermodynamic properties of NH3 in choline chloride-based deep eutectic solvents[J]. J. Chem. Thermodyn., 2019, 133: 79-84. |
26 | Xu W G, Li L, Ma X X, et al. Density, surface tension, and refractive index of ionic liquids homologue of 1-alkyl-3-methylimidazolium tetrafluoroborate [Cnmim][BF4] (n = 2, 3, 4, 5, 6)[J]. J. Chem. Eng. Data, 2012, 57(8): 2177-2184. |
27 | Matkowska D, Hofman T. High-pressure volumetric properties of ionic liquids: 1-butyl-3-methylimidazolium tetrafluoroborate, [C4mim][BF4], 1-butyl-3-methylimidazolium methylsulfate [C4mim][MeSO4] and 1-ethyl-3-methylimidazolium ethylsulfate, [C2mim][EtSO4][J]. J. Mol. Liq., 2012, 165: 161-167. |
28 | Sanmamed Y A, González-Salgado D, Troncoso J, et al. Experimental methodology for precise determination of density of RTILs as a function of temperature and pressure using vibrating tube densimeters[J]. J. Chem. Thermodyn., 2010, 42(4): 553-563. |
29 | Sanmamed Y A, González-Salgado D, Troncoso J, et al. Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry[J]. Fluid Phase Equilibr., 2007, 252(1/2): 96-102. |
30 | Salgado J, Regueira T, Lugo L, et al. Density and viscosity of three (2, 2, 2-trifluoroethanol + 1-butyl-3-methylimidazolium) ionic liquid binary systems[J]. J. Chem. Thermodyn., 2014, 70: 101-110. |
31 | Yadav A, Pandey S. Densities and viscosities of (choline chloride + urea) deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 K to 363.15 K[J]. J. Chem. Eng. Data, 2014, 59(7): 2221-2229. |
32 | Shahbaz K, Bagh F S G, Mjalli F S, et al. Prediction of refractive index and density of deep eutectic solvents using atomic contributions[J]. Fluid Phase Equilibr., 2013, 354: 304-311. |
33 | Leron R B, Li M H. High-pressure volumetric properties of choline chloride–ethylene glycol based deep eutectic solvent and its mixtures with water[J]. Thermochim. Acta, 2012, 546: 54-60. |
34 | Waliszewski D, Stepniak I, Piekarski H, et al. Heat capacities of ionic liquids and their heats of solution in molecular liquids[J]. Thermochim. Acta, 2005, 433: 149-152. |
35 | Paulechka Y U, Blokhin A V, Kabo G J. Evaluation of thermodynamic properties for non-crystallizable ionic liquids[J]. Thermochim. Acta, 2015, 604: 122-128. |
36 | Waliszewski D. Heat capacities of the mixtures of ionic liquids with methanol at temperatures from 283.15 K to 323.15 K[J]. J. Chem. Thermodyn., 2008, 40(2): 203-207. |
1 | Brautbar N, Wu M P, Richter E D. Chronic ammonia inhalation and interstitial pulmonary fibrosis: a case report and review of the literature[J]. Arch. Environ. Health, 2003, 58(9): 592-596. |
2 | Zhang Y S, Luan S J, Chen L L, et al. Estimating the volatilization of ammonia from synthetic nitrogenous fertilizers used in China[J]. J. Environ. Manage., 2011, 92(3): 480-493. |
3 | Matthews E. Nitrogenous fertilizers: global distribution of consumption and associated emissions of nitrous oxide and ammonia[J]. Global Biogeochem. Cy., 1994, 8(4): 411-439. |
4 | Jung S Y, Lee S J, Park J J, et al. The simultaneous removal of hydrogen sulfide and ammonia over zinc-based dry sorbent supported on alumina[J]. Sep. Purif. Technol., 2008, 63(2): 297-302. |
5 | Amblard M, Burch R, Southward B W L. A study of the mechanism of selective conversion of ammonia to nitrogen on Ni/γ-Al2O3 under strongly oxidising conditions[J]. Catal. Today, 2000, 59(3/4): 365-371. |
37 | Zhang Z H, Cui T, Zhang J L, et al. Thermodynamic investigation of room temperature ionic liquid: the heat capacity and thermodynamic functions of BMIPF6[J]. J. Therm. Anal. Calorim., 2010, 101: 1143-1148. |
38 | Leron R B, Li M H. Molar heat capacities of choline chloride-based deep eutectic solvents and their binary mixtures with water[J]. Thermochim. Acta, 2012, 530: 52-57. |
39 | Valderrama J O, Robles P A. Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids[J]. Ind. Eng. Chem. Res., 2007, 46(4): 1338-1344. |
40 | Peyrovedin H, Haghbakhsh R, Duarte A R C, et al. A global model for the estimation of speeds of sound in deep eutectic solvents[J]. Molecules, 2020, 25(7): 1626. |
41 | 陈五平. 无机化工工艺学 (一): 合成氨[M]. 北京: 化学工业出版社, 1997: 2. |
Chen W P. Inorganic Chemical Technology (Ⅰ): Synthetic Ammonia [M]. Beijing: Chemical Industry Press, 1997: 2. | |
6 | Rumburg B, Neger M, Mount G H, et al. Liquid and atmospheric ammonia concentrations from a dairy lagoon during an aeration experiment[J]. Atmospheric Environ., 2004, 38(10): 1523-1533. |
7 | Dasgupta P K, Dong S. Solubility of ammonia in liquid water and generation of trace levels of standard gaseous ammonia[J]. Atmospheric Environ., 1986, 20(3): 565-570. |
8 | Rumpf B, Maurer G. Solubility of ammonia in aqueous solutions of phosphoric acid: model development and application[J]. J. Solution Chem., 1994, 23(1): 37-51. |
9 | Yokozeki A, Shiflett M B. Ammonia solubilities in room-temperature ionic liquids[J]. Ind. Eng. Chem. Res., 2007, 46(5): 1605-1610. |
10 | Gonzalez-Miquel M, Palomar J, Omar S, et al. CO2/N2 selectivity prediction in supported ionic liquid membranes (SILMs) by COSMO-RS[J]. Ind. Eng. Chem. Res., 2011, 50(9): 5739-5748. |
11 | Zhao Y S, Gani R, Afzal R M, et al. Ionic liquids for absorption and separation of gases: an extensive database and a systematic screening method[J]. AIChE J., 2017, 63(4): 1353-1367. |
12 | Zhang J Y, Huang K. Densities and viscosities of, and NH3 solubilities in deep eutectic solvents composed of ethylamine hydrochloride and acetamide[J]. J. Chem. Thermodyn., 2019, 139: 105883. |
13 | Oliveira F S, Rebelo L P N, Marrucho I M. Influence of different inorganic salts on the ionicity and thermophysical properties of 1-ethyl-3-methylimidazolium acetate ionic liquid[J]. J. Chem. Eng. Data, 2015, 60(3): 781-789. |
14 | Ning H, Hou M Q, Mei Q Q, et al. The physicochemical properties of some imidazolium-based ionic liquids and their binary mixtures[J]. Sci. China Chem., 2012, 55(8): 1509-1518. |
15 | 冯伟珍. 合成氨系统弛放气、吹出气中的氨回收[J]. 磷肥与复肥, 2018, 33(7): 32-34. |
Feng W Z. Recycling of ammonia in purge gas and blow out gas of synthesis ammonia system[J]. Phosphate & Compound Fertilizer, 2018, 33(7): 32-34. | |
16 | 梁鹏. 合成氨生产中的废气利用及节能效益[J]. 中国石油和化工标准与质量, 2019, 39(14): 16-17. |
Liang P. Waste gas utilization and energy saving benefits in ammonia production[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(14): 16-17. | |
17 | Redlich O, Kwong J N S. On the thermodynamics of solutions (Ⅴ): An equation of state. Fugacities of gaseous solutions[J]. Chem. Rev., 1949, 44(1): 233-244. |
18 | Yan Y, Chen C C. Thermodynamic modeling of CO2 solubility in aqueous solutions of NaCl and Na2SO4[J]. J. Supercrit. Fluid, 2010, 55(2): 623-634. |
19 | Oexmann J, Kather A. Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: the misguided focus on low heat of absorption solvents[J]. Int. J. Greenh. Gas Control., 2010, 4(1): 36-43. |
20 | Zhang Y Y, Ji X Y, Xie Y J, et al. Thermodynamic analysis of CO2 separation from biogas with conventional ionic liquids[J]. Appl. Energ., 2018, 217: 75-87. |
21 | Glasser L. Lattice and phase transition thermodynamics of ionic liquids[J]. Thermochim. Acta, 2004, 421(1/2): 87-93. |
22 | Fang D W, Yan Q, Li D, et al. Estimation of physicochemical properties of 1-alkyl-3-methylimidazolium glutamate[J]. J. Chem. Thermodyn., 2014, 79: 12-18. |
23 | Li G H, Zhou Q, Zhang X P, et al. Solubilities of ammonia in basic imidazolium ionic liquids[J]. Fluid Phase Equilibr., 2010, 297(1): 34-39. |
24 | Zhong F Y, Huang K, Peng H L. Solubilities of ammonia in choline chloride plus urea at (298.2—353.2) K and (0—300) kPa[J]. J. Chem. Thermodyn., 2019, 129: 5-11. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[5] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[6] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[7] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[8] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[9] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[10] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[11] | Qian LIU, Xianglan ZHANG, Zhiping LI, Yulong LI, Mengxing HAN. Screening of deep eutectic solvents and study on extraction performance for oil-hydroxybenzene separation [J]. CIESC Journal, 2022, 73(9): 3915-3928. |
[12] | Wenxuan BAI, Jinxiang CHEN, Fen LIU, Jingcong ZHANG, Zhiping GU, Chengming XIONG, Wangjun SHI, Jiang YU. Metal-based ionic liquid wet oxidative desulfurization process: development and prospect [J]. CIESC Journal, 2022, 73(5): 1847-1862. |
[13] | Xue FU, Tingting CHEN, Tingting CHEN, Yingjie XU. Research progress on the conductivity properties of ionic liquids [J]. CIESC Journal, 2022, 73(5): 1883-1893. |
[14] | Yanlong JIANG, Ni ZHANG, Danran LI, Bingbing ZHU, Yichen JIANG, Haijun CHEN, Yuezhao ZHU. Selected ionic liquids by COSMO-RS method for tar removal [J]. CIESC Journal, 2022, 73(4): 1704-1713. |
[15] | Mingyan LI, Jinlong LI, Changjun PENG, Honglai LIU. The effect of ionic liquids on the vapor-liquid equilibrium of ammonia-water solution by the COSMO-SAC [J]. CIESC Journal, 2022, 73(3): 1044-1053. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||