CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 901-912.DOI: 10.11949/0438-1157.20201106
• Reviews and monographs • Previous Articles Next Articles
WANG Yuejie(),LI Lingling,HE Chunhong
Received:
2020-08-03
Revised:
2020-09-03
Online:
2021-02-05
Published:
2021-02-05
Contact:
WANG Yuejie
通讯作者:
王曰杰
作者简介:
王曰杰(1990—),男,博士,工程师,基金资助:
CLC Number:
WANG Yuejie, LI Lingling, HE Chunhong. Review on the bioleaching of spent refinery catalysts for metals removal[J]. CIESC Journal, 2021, 72(2): 901-912.
王曰杰, 李玲玲, 何春宏. 炼油废催化剂生物淋滤脱金属研究进展[J]. 化工学报, 2021, 72(2): 901-912.
Add to citation manager EndNote|Ris|BibTeX
35 | Zhang H Z, Guo L, Liu Z W, et al. Hazardous characteristics and pollution features of spent fluid catalytic cracking catalysts[J]. Environmental Protection of Chemical Industry, 2019, 39(2): 231-234. |
36 | Srichandan H, Kim D J, Gahan C S, et al. Bench-scale batch bioleaching of spent petroleum catalyst using mesophilic iron and sulfur oxidizing acidophiles[J]. Korean Journal of Chemical Engineering, 2013, 30(5): 1076-1082. |
37 | Pathak A, Srichandan H, Kim D J. Fractionation behavior of metals (Al, Ni, V, and Mo) during bioleaching and chemical leaching of spent petroleum refinery catalyst[J]. Water, Air, & Soil Pollution, 2014, 225(3): 1-10. |
38 | Mishra D, Kim D J, Ralph D E, et al. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect[J]. Journal of Hazardous Materials, 2008, 152(3): 1082-1091. |
39 | Garbarino G, Riani P, Infantes-Molina A, et al. On the detectability limits of nickel species on NiO/γ-Al2O3 catalytic materials[J]. Applied Catalysis A: General, 2016, 525: 180-189. |
40 | Pathak A, Srichandan H, Kim D J. Column bioleaching of metals from refinery spent catalyst by Acidithiobacillus thiooxidans: effect of operational modifications on metal extraction, metal precipitation, and bacterial attachment[J]. Journal of Environmental Management, 2019, 242: 372-383. |
41 | 张旭, 冯雅丽, 李浩然, 等. 微生物浸出MnO2过程中嗜酸氧化亚铁硫杆菌与Fe3+的催化作用[J]. 化工学报, 2014, 65(8): 3159-3163. |
Zhang X, Feng Y L, Li H R, et al. Catalytic effect of Acidithiobacillus ferrooxidans and Fe3+ on microbial leaching process of MnO2[J]. CIESC Journal, 2014, 65(8): 3159-3163. | |
42 | Burgstaller W, Schinner F. Leaching of metals with fungi[J]. Journal of Biotechnology, 1993, 27(2): 91-116. |
43 | Bayraktar O. Bioleaching of nickel from equilibrium fluid catalytic cracking catalysts [J]. World Journal of Microbiology and Biotechnology, 2005, 21(5): 661-665. |
44 | Das S, Deshavath N N, Goud V V, et al. Bioleaching of Al from spent fluid catalytic cracking catalyst using Aspergillus species[J]. Biotechnology Reports, 2019, 23: e00349. |
45 | Reed D W, Fujita Y, Daubaras D L, et al. Bioleaching of rare earth elements from waste phosphors and cracking catalysts[J]. Hydrometallurgy, 2016, 166: 34-40. |
1 | Pradhan D, Kim D J, Ahn J G, et al. Kinetics and statistical behavior of metals dissolution from spent petroleum catalyst using acidophilic iron oxidizing bacteria[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 866-871. |
2 | 刘腾, 邱兆富, 杨骥, 等. 我国废炼油催化剂的产生量、危害及处理方法[J]. 化工环保, 2015, 35(2): 159-164. |
Liu T, Qiu Z F, Yang J, et al. Output, hazard and treatment methods of spent refinery catalysts in China[J]. Environmental Protection of Chemical Industry, 2015, 35(2): 159-164. | |
3 | Research BCC. Refinery Catalysts: Technologies and Global Markets[R]. Wellesley (MA): BCC Publishing, 2013. |
4 | 刘健, 邱兆富, 杨骥, 等. 我国石油化工废催化剂的综合利用[J]. 中国资源综合利用, 2015, 33(6): 38-42. |
Liu J, Qiu Z F, Yang J, et al. The comprehensive utilization of spent petrochemical catalysts in China[J]. China Resources Comprehensive Utilization, 2015, 33(6): 38-42. | |
5 | Dong H, Zhao J, Chen J, et al. Recovery of platinum group metals from spent catalysts: a review[J]. International Journal of Mineral Processing, 2015, 145: 108-113. |
6 | 于泳, 彭胜, 严加才, 等. 铂族金属催化剂的回收技术进展[J]. 河北化工, 2011, 34(2): 50-55. |
Yu Y, Peng S, Yan J C, et al. Progress of platinum group metals recovery from spent carrier catalysts[J]. Hebei Chemical Industry, 2011, 34(2): 50-55. | |
7 | Srichandan H, Pathak A, Singh S, et al. Sequential leaching of metals from spent refinery catalyst in bioleaching–bioleaching and bioleaching–chemical leaching reactor: comparative study[J]. Hydrometallurgy, 2014, 150: 130-143. |
8 | Pathak A, Dastidar M G, Sreekrishnan T R. Bioleaching of heavy metals from sewage sludge: a review[J]. Journal of Environmental Management, 2009, 90(8): 2343-2353. |
9 | Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching review part A[J]. Applied Microbiology and Biotechnology, 2003, 63(3): 239-248. |
10 | Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides—a review[J]. Hydrometallurgy, 2006, 84(1/2): 81-108. |
11 | Motaghed M, Mousavi S M, Rastegar S O, et al. Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: statistical modeling and process optimization[J]. Bioresource Technology, 2014, 171: 401-409. |
12 | Pathak A, Healy M G, Morrison L. Changes in the fractionation profile of Al, Ni, and Mo during bioleaching of spent hydroprocessing catalysts with Acidithiobacillus ferrooxidans[J]. Journal of Environmental Science and Health, Part A, 2018, 53(11): 1006-1014. |
13 | Mishra D, Kim D J, Ralph D E, et al. Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs[J]. Hydrometallurgy, 2007, 88(1/2/3/4): 202-209. |
14 | Amiri F, Yaghmaei S, Mousavi S M, et al. Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger[J]. Hydrometallurgy, 2011, 109(1/2): 65-71. |
15 | Gholami R M, Borghei S M, Mousavi S M. Fungal leaching of hazardous heavy metals from a spent hydrotreating catalyst[J]. International Journal of Chemical and Molecular Engineering, 2011, 5(4): 362-367. |
16 | 贺菊花, 张莹琦, 程刚. 城镇污泥重金属去除技术研究进展[J]. 应用化工, 2015, 44(8): 1541-1545. |
He J H, Zhang Y Q, Cheng G. Research progress in technologies of heavy metals from urban sewage sludge[J]. Applied Chemical Industry, 2015, 44(8): 1541-1545. | |
17 | 刁维强, 王祖伟, 徐喆, 等. 一株黑曲霉的筛选及其对河道底泥重金属的生物淋滤去除[J]. 生态学杂志, 2019, 38(4): 1067-1074. |
Diao W Q, Wang Z W, Xu Z, et al. Isolation of Aspergillus niger SY1 and its role in bioleaching of heavy metals from contaminated river sediments[J]. Chinese Journal of Ecology, 2019, 38(4): 1067-1074. | |
18 | 周顺桂, 周立祥, 黄焕忠. 生物淋滤技术在去除污泥中重金属的应用[J]. 生态学报, 2002, 22(1): 125-133. |
Zhou S G, Zhou L X, Huang H Z. Removal of heavy metals from sewage sludge by bioleaching[J]. Acta Ecologica Sinica, 2002, 22(1): 125-133. | |
19 | 周顺桂, 胡佩, 雷发懋. Tween-80对生物淋滤法去除垃圾焚烧飞灰中重金属的影响[J]. 环境科学研究, 2006, 19(2): 82-85. |
Zhou S G, Hu P, Lei F M. Leaching heavy metals from MSWI fly ash by using Acidithiobacillus thiooxidans in the presence of a surfactant agent[J]. Research of Environmental Sciences, 2006, 19(2): 82-85. | |
20 | 吴庭吉, 汪群慧, 杨洁, 等. 利用响应面法优化生物淋滤飞灰处理条件的研究[J]. 中国环境科学, 2009, 29(7): 738-744. |
Wu T J, Wang Q H, Yang J, et al. Optimization on bioleaching factors of municipal solid waste incineration fly ash using response surface methodology[J]. China Environmental Science, 2009, 29(7): 738-744. | |
21 | 彭昌盛, 孟柯, 臧小龙, 等. 微生物淋滤在重金属污染土壤修复中的研究进展[J]. 环境污染与防治, 2016, 38(3): 77-81, 89. |
Peng C S, Meng K, Zang X L, et al. Research progress of microbial leaching in remediation of heavy metal polluted soil[J]. Environmental Pollution and Control, 2016, 38(3): 77-81, 89. | |
22 | 周普雄, 严勰, 余震, 等. 生物淋滤联合类Fenton反应去除污染土壤中重金属的效果[J]. 环境科学, 2016, 37(9): 3575-3581. |
Zhou P X, Yan X, Yu Z, et al. Performance of bioleaching combined with Fenton-like reaction in heavy metals removal from contaminated soil[J]. Environmental Science, 2016, 37(9): 3575-3581. | |
23 | 辛宝平, 朱庆荣, 李是珅, 等. 生物淋滤溶出废旧锂离子电池中钴的研究[J]. 北京理工大学学报, 2007, 27(6): 551-555. |
Xin B P, Zhu Q R, Li S K, et al. Study on the release of Co from retrieved Li-ion batteries by bioleaching[J]. Transactions of Beijing Institute of Technology, 2007, 27(6): 551-555. | |
24 | 朱庆荣, 辛宝平, 李是坤, 等. 生物淋滤直接浸出废旧电池中有毒重金属的实验研究[J]. 环境化学, 2007, 26(5): 646-650. |
Zhu Q R, Xin B P, Li S K, et al. Experiment research on releasing heavy metal from wasted batteries by bioleaching[J]. Environmental Chemistry, 2007, 26(5): 646-650. | |
25 | Aung K M M, Ting Y P. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger[J]. Journal of Biotechnology, 2005, 116(2): 159-170. |
26 | Muddanna M H, Baral S S. Leaching of nickel and vanadium from the spent fluid catalytic cracking catalyst by reconnoitering the potential of Aspergillus niger associating with chemical leaching[J]. Journal of Environmental Chemical Engineering, 2019, 7(2): 103025. |
27 | 李丹丹. FCC废催化剂的无害化及水处理应用研究[D]. 北京: 北京化工大学, 2016. |
Li D D. Research on harmlessness and the water treatment of waste FCC catalysts[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
28 | 刘腾, 邱兆富, 杨骥, 等. 废FCC催化剂的形态、成分分析及环境风险评价[J]. 无机盐工业, 2016, 48(11): 71-74. |
Liu T, Qiu Z F, Yang J, et al. Morphological, composition analysis, and environmental risks assessment of spent FCC catalysts[J]. Inorganic Chemicals Industry, 2016, 48(11): 71-74. | |
29 | Beolchini F, Fonti V, Ferella F, et al. Metal recovery from spent refinery catalysts by means of biotechnological strategies[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 529-534. |
30 | Bharadwaj A, Ting Y P. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: leaching mechanism and effect of decoking[J]. Bioresource Technology, 2013, 130: 673-680. |
31 | Vyas S, Ting Y P. Sequential biological process for molybdenum extraction from hydrodesulphurization spent catalyst[J]. Chemosphere, 2016, 160: 7-12. |
32 | Ferreira P F, Sérvulo E F C, Da Costa A C A, et al. Bioleaching of metals from a spent diesel hydrodesulfurization catalyst employing Acidithiobacillus thiooxidans FG-01[J]. Brazilian Journal of Chemical Engineering, 2017, 34(1): 119-129. |
33 | Santhiya D, Ting Y P. Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst[J]. Journal of Biotechnology, 2006, 121(1): 62-74. |
34 | 周宁波, 肖华, 陈韬, 等. 炼油废催化剂中分离有害重金属工艺条件研究[J]. 无机盐工业, 2014, 46(1): 69-72. |
Zhou N B, Xiao H, Chen T, et al. Separation technology of harmful heavy metals from waste oil-refining catalyst[J]. Inorganic Chemicals Industry, 2014, 46(1): 69-72. | |
35 | 张宏哲, 郭磊, 刘政伟, 等. 废催化裂化催化剂的危险性及污染特征[J]. 化工环保, 2019, 39(2): 231-234. |
46 | Amiri F, Yaghmaei S, Mousavi S M. Comparison of different methods in bioleaching of tungsten-rich spent hydro-cracking catalyst using adapted Penecillum simplicissimum BBRC-20019[J]. Chemical Engineering Transactions, 2010, 21: 1483-1488. |
47 | Amiri F, Mousavi S M, Yaghmaei S. Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum[J]. Separation and Purification Technology, 2011, 80(3): 566-576. |
48 | Amiri F, Yaghmaei S, Mousavi S M. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum[J]. Bioresource Technology, 2011, 102(2): 1567-1573. |
49 | Amiri F, Mousavi S M, Yaghmaei S, et al. Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions[J]. Biochemical Engineering Journal, 2012, 67: 208-217. |
50 | Gerayeli F, Ghojavand F, Mousavi S M, et al. Screening and optimization of effective parameters in biological extraction of heavy metals from refinery spent catalysts using a thermophilic bacterium[J]. Separation and Purification Technology, 2013, 118: 151-161. |
51 | Shahrabi-Farahani M, Yaghmaei S, Mousavi S M, et al. Bioleaching of heavy metals from a petroleum spent catalyst using Acidithiobacillus thiooxidans in a slurry bubble column bioreactor[J]. Separation and Purification Technology, 2014, 132: 41-49. |
52 | Gholami R M, Borghei S M, Mousavi S M. Bacterial leaching of a spent Mo-Co-Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans[J]. Hydrometallurgy, 2011, 106(1/2): 26-31. |
53 | Vyas S, Ting Y P. Effect of ultrasound on bioleaching of hydrodesulphurization spent catalyst[J]. Environmental Technology & Innovation, 2019, 14: 100310. |
54 | Beolchini F, Fonti V, Ferella F, et al. Bioleaching of nickel, vanadium and molybdenum from spent refinery catalysts [J]. Advanced Materials Research, 2009, 71/72/73: 657-660. |
55 | Mishra D, Ahn J G, Kim D J, et al. Dissolution kinetics of spent petroleum catalyst using sulfur oxidizing acidophilic microorganisms[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 1231-1236. |
56 | Aung K M M. Bioleaching of metals from spent catalysts for metal removal/recovery[D]. Singapore: National University of Singapore, 2005. |
57 | Srichandan H, Singh S, Blight K, et al. An integrated sequential biological leaching process for enhanced recovery of metals from decoked spent petroleum refinery catalyst: a comparative study[J]. International Journal of Mineral Processing, 2015, 134: 66-73. |
58 | Pathak A, Srichandan H, Kim D J. Feasibility of bioleaching in removing metals (Al, Ni, V and Mo) from as received raw petroleum spent refinery catalyst: a comparative study on leaching yields, risk assessment code and reduced partition index[J]. Materials Transactions, 2015, 56(8): 1278-1286. |
59 | Pradhan D, Mishra D, Kim D J, et al. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 267-273. |
60 | Pradhan D, Patra A K, Kim D J, et al. A novel sequential process of bioleaching and chemical leaching for dissolving Ni, V, and Mo from spent petroleum refinery catalyst[J]. Hydrometallurgy, 2013, 131/132: 114-119. |
61 | Kim D J, Pradhan D, Ahn J G, et al. Enhancement of metals dissolution from spent refinery catalysts using adapted bacteria culture—effects of pH and Fe (Ⅱ)[J]. Hydrometallurgy, 2010, 103(1/2/3/4): 136-143. |
62 | Kim D J, Srichandan H, Gahan C S, et al. Thermophilic bioleaching of spent petroleum refinery catalyst using Sulfolobus metallicus[J]. Canadian Metallurgical Quarterly, 2012, 51(4): 403-412. |
63 | Pradhan D, Kim D J, Ahn J G, et al. Microbial leaching process to recover valuable metals from spent petroleum catalyst using iron oxidizing bacteria[J]. World Academy of Science, Engineering and Technology, 2010, 38: 958-962. |
64 | Srichandan H, Singh S, Pathak A, et al. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size[J]. Journal of Environmental Science and Health, Part A, 2014, 49(7): 807-818. |
65 | Vyas S, Ting Y P. Microbial leaching of heavy metals using Escherichia coli and evaluation of bioleaching mechanism[J]. Bioresource Technology Reports, 2020, 9: 100368. |
66 | Abdel-Aal E A, Rashad M M. Kinetic study on the leaching of spent nickel oxide catalyst with sulfuric acid[J]. Hydrometallurgy, 2004, 74(3/4): 189-194. |
[1] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[9] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[10] | Chao KANG, Jinpeng QIAO, Shengchao YANG, Chao PENG, Yuanpeng FU, Bin LIU, Jianrong LIU, Aleksandrova TATIANA, Chenlong DUAN. Research progress on activation extraction of valuable metals in coal gangue [J]. CIESC Journal, 2023, 74(7): 2783-2799. |
[11] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[12] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[13] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[14] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||