CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 425-439.DOI: 10.11949/0438-1157.20201189
• Reviews and monographs • Previous Articles Next Articles
WEI Ran(),ZHENG Yanyan,LIU Fang,WANG Tiefeng()
Received:
2020-08-20
Revised:
2020-09-19
Online:
2021-01-05
Published:
2021-01-05
Contact:
WANG Tiefeng
通讯作者:
王铁峰
作者简介:
魏然(1996—),男,硕士研究生,基金资助:
CLC Number:
WEI Ran, ZHENG Yanyan, LIU Fang, WANG Tiefeng. Progress in academic and application researches on polyoxymethylene dimethyl ethers[J]. CIESC Journal, 2021, 72(1): 425-439.
魏然, 郑妍妍, 刘昉, 王铁峰. 聚甲氧基二甲醚研究及应用进展[J]. 化工学报, 2021, 72(1): 425-439.
Add to citation manager EndNote|Ris|BibTeX
1 | 龚琴红. 交通运输对大气环境的影响及节能减排分析研究[J]. 交通节能与环保, 2014, 10(2): 73-75, 60. |
Gong Q H. Research into the effect on atmospheric environment and emission reduction of transportation[J]. Transport Energy Conservation & Environmental Protection, 2014, 10(2): 73-75, 60. | |
2 | Kalghatgi G T. The outlook for fuels for internal combustion engines[J]. International Journal of Engine Research, 2014, 15(4): 383-398. |
3 | Liotta F J, Montalvo D M. The effect of oxygenated fuels on emissions from a modern heavy-duty diesel engine[R]. SAETechnical Paper 932734, 1993. |
4 | Miyamoto N, Ogawa H, Arima T, et al. Improvement various oxygenated agents to diesel fuels[R]. SAETechnical Paper 962115, 1996. |
5 | Miyamoto N, Ogawa H, Nurun M, et al. Smokeless, NOxlow, high thermal efficiency, and low noise diesel combustion with oxygenated agents as main fuel[R]. SAETechnical Paper 980506, 1998. |
6 | Nabi M N, Minami M, Ogawa H, et al. Ultra low emission and high performance diesel combustion with highly oxygenated fuel[R]. SAETechnical Paper 2000-01-0231, 2000. |
7 | Hallgren B E, Heywood J B. Effects of oxygenated fuels on DI diesel combustion and emissions[R]. SAETechnical Paper 2001-01-0648, 2001. |
8 | Mueller C J, Martin G C. Effects of oxygenated compounds on combustion and soot evolution in a DI diesel engine: broadband natural luminosity imaging[R]. SAETechnical Paper 2002-01-1631, 2002. |
9 | Wang J X, Wu F J, Xiao J H, et al. Oxygenated blend design and its effects on reducing diesel particulate emissions[J]. Fuel, 2009, 88(10): 2037–2045. |
10 | Härtl M, Seidenspinner P, Jacob E, et al. Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1[J]. Fuel, 2015, 153: 328–335. |
11 | 邓小丹, 韩冬云, 李秀萍, 等. 聚甲氧基二甲醚对柴油性质的影响[J]. 当代化工, 2013, 42(11): 1508-1510, 1515. |
Deng X D, Han D Y, Li X P, et al. Study on the effect of adding polyoxymethylene dimethyl ethers on properties of diesel fuel[J]. Contemporary Chemical Industry, 2013, 42(11): 1508-1510, 1515. | |
12 | Qi J G, Hu Y F, Niu J G, et al. Evaluation of polyoxymethylene dimethyl ethers as a new type of diesel additives[J]. Fuel, 2018, 234: 135-141. |
13 | Lumpp B, Rothe D, Pastötter C, et al. Oxymethylene ethers as diesel fuel additives of the future[J]. MTZ World, 2011, 72(3): 34–38. |
14 | Pellegrini L, Marchionna M, Patrini R, et al. Combustion behaviour and emission performance of neat and blended polyoxymethylene dimethyl ethers in a light-duty diesel engine[R]. SAETechnical Paper 2012-01-1053, 2012. |
15 | Pellegrini L, Marchionna M, Patrini R, et al. Emission performance of neat and blended polyoxymethylene dimethyl ethers in an old light-duty diesel car[R]. SAETechnical Paper 2013-01-1035, 2013. |
16 | Chen H, He J J, Hua H N. Investigation on combustion and emission performance of a common rail diesel engine fueled with diesel/biodiesel/polyoxymethylene dimethyl ethers blends[J]. Energy & Fuels, 2017, 31(11): 11710-11722. |
17 | Liu J L, Wang H, Li Y, et al. Effects of diesel/PODE (polyoxymethylene dimethyl ethers) blends on combustion and emission characteristics in a heavy duty diesel engine[J]. Fuel, 2016, 177: 206-216. |
18 | Wang J X, Wu F J, Xiao J H, et al. Oxygenated blend design and its effects on reducing diesel particulate emissions[J]. Fuel, 2009, 88(10): 2037-2045. |
19 | Wang D, Zhu G L, Li Z, et al. Conceptual design of production of eco-friendly polyoxymethylene dimethyl ethers catalyzed by acid functionalized ionic liquids[J]. Chemical Engineering Science, 2019, 206: 10-21. |
20 | 谢萌, 马志杰, 王全红, 等. 聚甲氧基二甲醚及其高比例掺混柴油混合燃料发动机燃烧与排放的试验研究[J]. 西安交通大学学报, 2017, 51(3): 32-37, 140 |
Xie M, Ma Z J, Wang Q H, et al. Investigation of engine combustion and emission performance fueled with neat PODE and PODE/diesel blend[J]. Journal of Xi'an Jiaotong University, 2017, 51(3): 32-37, 140. | |
21 | 冯浩杰, 孙平, 刘军恒, 等. 聚甲氧基二甲醚-柴油混合燃料对柴油机燃烧与排放的影响[J]. 石油学报(石油加工), 2016, 32(4): 816-822. |
Feng H J, Sun P, Liu J H, et al. Effect of PODE3-8-diesel blended fuel on combustion and emissions of diesel engine[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(4): 816-822. | |
22 | 刘军恒, 孙平, 刘源, 等. PODE掺混比对高压共轨柴油机颗粒物物理特性的影响[J]. 西安交通大学学报, 2017, 51(12): 104-111 |
Liu J H, Sun P, Liu Y, et al. Effects of PODE blending ratio on the physical characteristics of particulate matters for high-pressure common-rail diesel engines[J]. Journal of Xi'an Jiaotong University, 2017, 51(12): 104-111. | |
23 | Liu J H, Sun P, Huang H, et al. Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends[J]. Applied Energy, 2017, 202: 527-536. |
24 | Liu H Y, Wang Z, Wang J X. Performance, combustion and emission characteristics of polyoxymethylene dimethyl ethers (PODE3-4)/ wide distillation fuel (WDF) blends in premixed low temperature combustion (LTC) [J]. SAE International Journal of Fuels and Lubricants, 2015, 8(2): 298-306. |
25 | Liu H Y, Wang Z, Wang J X, et al. Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends[J]. Energy, 2016, 97: 105-112. |
26 | Liu H Y, Wang Z, Li B W, et al. Exploiting new combustion regime using multiple premixed compression ignition (MPCI) fueled with gasoline/diesel/PODE (GDP) [J]. Fuel, 2016, 186: 639-647. |
27 | Barro C, Parravicini M, Boulouchos K. Neat polyoxymethylene dimethyl ether in a diesel engine(Part 1): Detailed combustion analysis[J]. Fuel, 2019, 256: 115892. |
28 |
Gao W Y, Liu J H, Sun P, et al. Numerical simulation on NO and soot formation process of a diesel engine with polyoxymethylene dimethyl ethers-diesel blend fuel[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, doi: 10.1080/15567036.2020.1726530.
DOI |
29 | Lu X C, Han D, Huang Z. Fuel design and management for the control of advanced compression-ignition combustion modes[J]. Progress in Energy and Combustion Science, 2011, 37(6): 741-783. |
30 | Sahoo B B, Sahoo N, Saha U K. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines—a critical review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6/7): 1151-1184. |
31 | Liu H Y, Wang Z, Li Y F, et al. Recent progress in the application in compression ignition engines and the synthesis technologies of polyoxymethylene dimethyl ethers[J]. Applied Energy, 2019, 233: 599-611. |
32 | Boyd R H. Some physical properties of polyoxymethylene dimethyl ethers[J]. Journal of Polymer Science, 1961, 50(153): 133-141. |
33 | Kang M R, Song H Y, Jin F X, et al. Synthesis and physicochemical characterization of polyoxymethylene dimethyl ethers[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 837-845. |
34 | Patrini R, Marchionna M. Liquid mixture consisting of diesel gas oils and oxygenated compounds: US10/373781[P]. 2003-02-27. |
35 | Lautenschutz L, Oestreich D, Seidenspinner P, et al. Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers[J]. Fuel, 2016, 173: 129-137. |
36 | Kajitani S, Chen Z L, Konno M, et al. Engine performance and exhaust characteristics of direct-injection diesel engine operated with DME[R]. SAETechnical Paper 972973, 1997. |
37 | Wang Y, Zhou L B, Wang H W. Diesel emission improvements by the use of oxygenated DME/diesel blend fuels[J]. Atmospheric Environment, 2006, 40(13): 2313-2320. |
38 | 黄瑾, 魏衍举, 汪文瑞, 等. 发动机燃用柴油和二甲醚时颗粒排放对比研究[J]. 内燃机工程, 2014, 35(4): 13-17, 24. |
Huang J, Wei Y J, Wang W R, et al. Comparison of PM emissions of engine fueled with DME and diesel fuels[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(4): 13-17, 24. | |
39 | 李跟宝, 宋清双, 周龙保, 等. 二甲醚与柴油互溶性实验研究[J]. 内燃机学报, 2006, 24(2): 122-126. |
Li G B, Song Q S, Zhou L B, et al. Experimental study on intersolubility of dimethyl ether and diesel fuel[J]. Transactions of CSICE, 2006, 24(2): 122-126. | |
40 | Zheng Y Y, Tang Q, Wang T F, et al. Synthesis of a green fuel additive over cation resins[J]. Chemical Engineering & Technology, 2013, 36(11): 1951-1956. |
41 | Bogatykh I, Osterland T, Stein H, et al. Investigation of the oxidative degradation of the synthetic fuel oxymethylene dimethyl ether[J]. Energy & Fuels, 2020, 34(3): 3357-3366. |
42 | Chen H, Su X, Li J H, et al. Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine[J]. Energy, 2019, 171: 981-999. |
43 | Liu H Y, Wang Z, Wang J X, et al. Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends[J]. Energy, 2015, 88: 793-800. |
44 | Liu H Y, Wang Z, Zhang J, et al. Study on combustion and emission characteristics of polyoxymethylene dimethyl ethers/diesel blends in light-duty and heavy-duty diesel engines[J]. Applied Energy, 2017, 185: 1393-1402. |
45 | 颜曦明, 王宝宇, 晁会霞. 聚甲氧基二甲醚合成反应机理及动力学研究进展[J]. 石油学报(石油加工), 2019, 35(1): 207-216. |
Yan X M, Wang B Y, Chao H X. Progress of reaction mechanisms and kinetics of polyoxymethylene dimethyl ethers synthesis[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2019, 35(1): 207-216. | |
46 | Zhao Y P, Xu Z, Chen H, et al. Mechanism of chain propagation for the synthesis of polyoxymethylene dimethyl ethers[J]. Journal of Energy Chemistry, 2013, 22(6): 833-836. |
47 | Liu F, Wang T F, Zheng Y Y, et al. Synergistic effect of Brønsted and Lewis acid sites for the synthesis of polyoxymethylene dimethyl ethers over highly efficient SO42-/TiO2 catalysts[J]. Journal of Catalysis, 2017, 355: 17-25. |
48 | Liu Y, Wang Y, Cai W F, et al. A synthesis, process optimization, and mechanism investigation for the formation of polyoxymethylene dimethyl ethers[J]. Transactions of Tianjin University, 2019, 25: 1-8. |
49 | Burger J, Siegert M, Ströfer E, et al. Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: properties, synthesis and purification concepts[J]. Fuel, 2010, 89(11): 3315-3319. |
50 | Li H J, Song H L, Zhao F, et al. Chemical equilibrium controlled synthesis of polyoxymethylene dimethyl ethers over sulfated titania[J]. Journal of Energy Chemistry, 2015, 24(2): 239-244. |
51 | Wu J B, Zhu H Q, Wu Z W, et al. High Si/Al ratio HZSM-5 zeolite: an efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene[J]. Green Chemistry, 2015, 17(4): 2353-2357. |
52 | Fu W H, Liang X M, Zhang H D, et al. Shape selectivity extending to ordered supermicroporous aluminosilicates[J]. Chemical Communications, 2015, 51(8): 1449-1452. |
53 | Xue Z Z, Shang H Y, Zhang Z L, et al. Efficient synthesis of polyoxymethylene dimethyl ethers on Al-SBA-15 catalysts with different Si/Al ratios and pore sizes[J]. Energy & Fuels, 2017, 31: 279-286. |
54 | Yang Z Y, Hu Y F, Ma W T, et al. Synthesis of polyoxymethylene dimethyl ethers catalyzed by pyrrolidinonium-based ionic liquids[J]. Chemical Engineering & Technology, 2017, 40(10): 1784-1791. |
55 | Song H Y, Li R Y, Jin F X, et al. Efficient and reusable zeolite-immobilized acidic ionic liquids for the synthesis of polyoxymethylene dimethyl ethers[J]. Molecular Catalysis, 2018, 455: 179-187. |
56 | Li H J, Li Y X, Guo T, et al. The green and expeditious synthesis of sulfated titania with enhanced catalytic activity in polyoxymethylene dimethyl ethers synthesis[J]. Reac. Kinet. Mech. Cat., 2018, 124: 139-151. |
57 | Wang R Y, Wu Z W, Li Z K, et al. Synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene over graphene oxide: probing the active species and relating the catalyst structure to performance[J]. Appl. Catal. A, 2019, 570: 15-22. |
58 | Baranowski C J, Bahmanpour A M, Heroguel F, et al. Insights into the nature of the active sites of tin-montmorillonite for the synthesis of polyoxymethylene dimethyl ethers (OME)[J]. ChemCatChem, 2019, 11: 3010-3021. |
59 | Qi J G, Hu Y F, Jiang S Q, et al. Lewis acids promote the catalytic selectivity to polyoxymethylene dimethyl ethers PODE3, 4[J]. Fuel, 2019, 245: 521-527. |
60 | Song H Y, Jin F X, Kang M R, et al. Novel polymeric acidic ionic liquids as green catalysts for the preparation of polyoxymethylene dimethyl ethers from the acetalation of methylal with trioxane[J]. RSC Advances, 2019, 9: 40662-40669. |
61 | Zhao Q, Wang H, Qin Z F, et al. Synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene with molecular sieves as catalysts[J]. Journal of Fuel Chemistry and Technology, 2011, 39(12): 918-923. |
62 | Fang X, Chen J, Ye L, et al. Efficient synthesis of poly(oxymethylene) dimethyl ethers over PVP-stabilized heteropolyacids through self-assembly[J]. Sci. China: Chem., 2015, 58: 131-138. |
63 | Li H J, Song H L, Chen L W, et al. Designed SO42-/Fe2O3-SiO2 solid acids for polyoxymethylene dimethyl ethers synthesis: the acid sites control and reaction pathways[J]. Applied Catalysis B: Environmental, 2015, 165: 466-476. |
64 | 施敏浩, 刘殿华, 赵光, 等. 甲醇和甲醛催化合成聚甲氧基二甲醚[J]. 化工学报, 2013, 64(3): 931-935. |
Shi M H, Liu D H, Zhao G, et al. Catalytic synthesis of polyoxymethylene dimethyl ethers from methanol and formaldehyde[J]. CIESC Journal, 2013, 64(3): 931-935. | |
65 | Zhang J Q, Fang D Y, Liu D H. Evaluation of Zr-alumina in production of polyoxymethylene dimethyl ethers from methanol and formaldehyde: performance tests and kinetic investigations[J]. Industrial & Engineering Chemistry Research, 2014, 53: 13589-13597. |
66 | Schmitz N, Homberg F, Berje J, et al. Chemical equilibrium of the synthesis of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2015, 54: 6409-6417. |
67 | Burger J, Ströfer E, Hasse H. Chemical equilibrium and reaction kinetics of the heterogeneously catalyzed formation of poly(oxymethylene) dimethyl ethers from methylal and trioxane[J]. Industrial & Engineering Chemistry Research, 2012, 51(39): 12751-12761. |
68 | 刘昉. 聚甲氧基二甲醚合成催化剂设计和催化工艺研究[D]. 北京: 清华大学, 2019. |
Liu F. Catalyst design and catalytical process investigation for synthesis of polyoxymethylene dimethyl ethers[D]. Beijing: Tsinghua University, 2019. | |
69 | Zheng Y Y, Tang Q, Wang T F, et al. Molecular size distribution in synthesis of polyoxymethylene dimethyl ethers and process optimization using response surface methodology[J]. Chemical Engineering Journal, 2015, 278: 183-189. |
70 | Li X J, Tian H Y, Liu D H. Liquid-liquid equilibrium for ternary systems of polyoxymethylene dimethyl ethers plus o‑xylene + water at 293.15 K[J]. Journal of Chemical and Engineering Data, 2019, 64(6): 2266-2272. |
71 | Liu Y, Wang Y, Cai W F. Salting effect of sodium hydroxide and sodium formate on the liquid-liquid equilibrium of polyoxymethylene dimethyl ethers in aqueous solution[J]. Journal of Chemical and Engineering Data, 2019, 64(6): 2578-2592. |
72 | Arvidson M, Fakley M E, Spencer M S. Lithium halide-assisted formation of polyoxymethylene dimethyl ethers from dimethoxymethane and formaldehyde[J]. Journal of Molecular Catalysis, 1987, 41(3): 391-393. |
73 | Wang F, Zhu G L, Li Z, et al. Mechanistic study for the formation of polyoxymethylene dimethyl ethers promoted by sulfonic acid-functionalized ionic liquids[J]. Journal of Molecular Catalysis A: Chemical, 2015, 408: 228-236. |
74 | Zhang J Q, Shi M H, Fang D Y, et al. Reaction kinetics of the production of polyoxymethylene dimethyl ethers from methanol and formaldehyde with acid cation exchange resin catalyst[J]. Reac. Kinet. Mech. Cat., 2014, 113: 459-470. |
75 | Schmitz N, Burger J, Hasse H. Reaction kinetics of the formation of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2015, 54: 12553-12560. |
76 | Zheng Y Y, Tang Q, Wang T F, et al. Kinetics of synthesis of polyoxymethylene dimethyl ethers from paraformaldehyde and dimethoxymethane catalyzed by ion-exchange resin[J]. Chemical Engineering Science, 2015, 134: 758-766. |
77 | Liu F, Wei R, Wang T F. Identification of the rate-determining step for the synthesis of polyoxymethylene dimethyl ethers from paraformaldehyde and dimethoxymethane[J]. Fuel Processing Technology, 2018, 180: 114-121. |
78 | Willian F, Richard E. Preparation of polyformals: US2449469[P]. 1948-09-14. |
79 | 王佳臻, 韩艳辉, 胡慧敏, 等. 我国聚甲氧基二甲醚技术现状和产业化进展[J]. 现代化工, 2017, 37(8): 15-18. |
Wang J Z, Han Y H, Hu H M, et al. China's status and industrialization progress of polyoxymethylene dimethyl ethers technology[J]. Modern Chemical Industry, 2017, 37(8): 15-18. | |
80 | 史高峰, 陈英赞, 陈学福, 等. 聚甲氧基二甲醚研究进展[J]. 天然气化工, 2012, 37(2): 74-78. |
Shi G F, Chen Y Z, Chen X F, et al. Research progress in polyoxymethylene dimethyl ethers[J]. Natural Gas Chemical Industry, 2012, 37(2): 74-78. | |
81 | 钟子太, 刘红. 聚甲氧基二甲醚工艺技术[J]. 氮肥技术, 2016, 37(6): 38-41. |
Zhong Z T, Liu H. Polyoxymethylene dimethyl ethers process technology[J]. Nitrogenous Fertilizer Technology, 2012, 37(2): 74-78. | |
82 | 张信伟, 李杰, 倪向前, 等. 聚甲氧基二甲醚合成技术的产业化进展[J]. 化工进展, 2016, 35(7): 2293-2298. |
Zhang X W, Li J, Ni X Q, et al. Development of the synthesis technology of polyoxymethylene dimethyl ethers[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2293-2298. | |
83 | 郑妍妍, 唐强, 王铁峰, 等. 聚甲氧基二甲醚的研究进展及前景[J]. 化工进展, 2016, 35(8): 2412-2419. |
Zheng Y Y, Tang Q, Wang T F, et al. Progress and prospect of polyoxymethylene dimethyl ethers[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2412-2419. | |
84 | 王云芳, 陈建国, 邢金仙, 等. 一种聚甲氧基二甲醚的生产装置系统及生产工艺: 103848730[P]. 2014-06-11. |
Wang Y F, Chen J G, Xing J X, et al. Production device system and process of polyoxymethylene dimethyl ethers: 103848730[P]. 2014-06-11. | |
85 | 王云芳, 陈建国, 邢金仙, 等. 一种制备聚甲氧基二甲醚的组合工艺: 103360224[P]. 2013-10-23. |
Wang Y F, Chen J G, Xing J X, et al. A combined synthesis process of polyoxymethylene dimethyl ethers: 103360224[P]. 2013-10-23. | |
86 | 谢忠设, 张建民. 阻击雾霾, 化企攻坚PODE助柴油升级[N]. 中国化工报, 2015-01-13. |
Xie Z S, Zhang J M. Chemical enterprises focus on PODE production to upgrade diesel fuel and alleviate the smog[N]. China Chemical Industry News, 2015-01-13. | |
87 | 国内聚甲氧基二甲醚(DMMn)系列技术介绍[J]. 煤炭加工与综合利用, 2015, (10): 12-15, 63. |
Introduction to domestic technologies of polyoxymethylene dimethyl ethers (DMMn) synthesis[J]. Coal Processing & Comprehensive Utilization, 2015, (10): 12-15, 63. | |
88 | 李燊, 袁梦, 张燕鹏, 等. 聚甲氧基二甲醚合成工艺现状分析[J]. 应用化工, 2020, 49(4): 951-957. |
Li S, Yuan M, Zhang Y P, et al. Analysis of current status synthesis of polyoxymethylene dimethyl ethers[J]. Applied Chemical Industry, 2020, 49(4): 951-957. | |
89 | 耿雪丽, 孟莹, 从海峰, 等. 聚甲氧基二甲醚合成工艺及产业化述评[J]. 化工进展, 2020, 39(12): 4993-5008. |
Geng X L, Meng Y, Cong H F, et al. A review on synthesis and industrialization of polyoxymethylene dimethyl ethers[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4993-5008. | |
90 | 杨亮, 徐宁霞. 新型柴油改良剂DMMn发展前景分析[J]. 化学工程, 2016, 44(9): 75-78. |
Yang L, Xu N X. New type of diesel conditioner DMMn prospect analysis[J]. Chemical Engineering(China), 2016, 44(9): 75-78. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[4] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[5] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[6] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[7] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[8] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[9] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[10] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[11] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[12] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[13] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[14] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[15] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||