CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 653-668.DOI: 10.11949/0438-1157.20201306
• Reviews and monographs • Previous Articles Next Articles
Received:
2020-09-13
Revised:
2020-12-15
Online:
2021-02-05
Published:
2021-02-05
Contact:
LUO Yingwu
通讯作者:
罗英武
作者简介:
赵玉海(1994—),男,博士研究生,基金资助:
CLC Number:
ZHAO Yuhai, LUO Yingwu. Reversible deactivation radical interfacial polymerization[J]. CIESC Journal, 2021, 72(2): 653-668.
赵玉海, 罗英武. 可逆失活自由基界面聚合[J]. 化工学报, 2021, 72(2): 653-668.
Add to citation manager EndNote|Ris|BibTeX
98 | Yeow J, Chapman R, Gormley A J, et al. Up in the air: oxygen tolerance in controlled/living radical polymerisation[J]. Chemical Society Reviews, 2018, 47(12): 4357-4387. |
99 | Yan W, Dadashi-Silab S, Matyjaszewski K, et al. Surface-initiated photoinduced ATRP: mechanism, oxygen tolerance, and temporal control during the synthesis of polymer brushes[J]. Macromolecules, 2020, 53(8): 2801-2810. |
1 | Dong R, Zhang T, Feng X. Interface-assisted synthesis of 2D materials: trend and challenges[J]. Chemical Reviews, 2018, 118(13): 6189-6235. |
2 | Raj W, Russo A, Zhang Y, et al. Renewable fabric surface-initiated ATRP polymerizations: towards mixed polymer brushes[J]. Nanomaterials, 2020, 10(3): 536-547. |
3 | Zhang F, Fan J B, Wang S. Interfacial polymerization: from chemistry to functional materials[J]. Angewandte Chemie International Edition, 2020, 59(49): 21840-21856. |
4 | Zhao N, Yan L, Zhao X, et al. Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications[J]. Chemical Reviews, 2019, 119(3): 1666-1762. |
5 | 项青, 罗英武. RAFT乳液聚合[J]. 化学进展, 2018, 30(1): 101-111. |
Xiang Q, Luo Y W. RAFT emulsion polymerization[J]. Progress in Chemistry, 2018, 30(1): 101-111. | |
6 | Zhang H. Controlled/“living” radical precipitation polymerization: a versatile polymerization technique for advanced functional polymers[J]. European Polymer Journal, 2013, 49(3): 579-600. |
7 | Wang H, Song M, Hang T. Functional interfaces constructed by controlled/living radical polymerization for analytical chemistry[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 2881-2898. |
8 | Bao X, Fan X, Yu Y, et al. Graft modification of lignin-based cellulose via enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization and free-radical coupling[J]. International Journal of Biological Macromolecules, 2020, 144: 267-278. |
9 | Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes[J]. Journal of the American Chemical Society, 1995, 117(20): 5614-5615. |
10 | Chiefari J, Chong Y K, Ercole F, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process[J]. Macromolecules, 1998, 31(16): 5559-5562. |
11 | Georges M K, Veregin R P N, Kazmaier P M, et al. Narrow molecular weight resins by a free-radical polymerization process[J]. Macromolecules, 1993, 26(11): 2987-2988. |
12 | D'Agosto F, Rieger J, Lansalot M. RAFT-mediated polymerization-induced self-assembly[J]. Angewandte Chemie International Edition, 2020, 59(22): 8368-8392. |
13 | Matyjaszewski K. Advanced materials by atom transfer radical polymerization[J]. Advanced Materials, 2018, 30(23): 1706441. |
14 | Pyun J, Matyjaszewski K. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“living” radical polymerization[J]. Chemistry of Materials, 2001, 13(10): 3436-3448. |
15 | Moad G, Rizzardo E, Thang S H. Living radical polymerization by the raft process—a third update[J]. Australian Journal of Chemistry, 2012, 65(8): 985-1076. |
16 | Jackson A W. Reversible-deactivation radical polymerization of cyclic ketene acetals[J]. Polymer Chemistry, 2020, 11(21): 3525-3545. |
17 | Liu D, He J, Zhang L, et al. 100th anniversary of macromolecular science viewpoint: heterogenous reversible deactivation radical polymerization at room temperature. recent advances and future opportunities[J]. ACS Macro Letters, 2019, 8(12): 1660-1669. |
18 | Wittbecker E L, Morgan P W. Interfacial polycondensation[J]. Journal of Polymer Science, 1959, 40(137): 289-297. |
19 | Song Y, Fan J B, Wang S. Recent progress in interfacial polymerization[J]. Materials Chemistry Frontiers, 2017, 1(6): 1028-1040. |
20 | Zhang Y, Feng X, Yuan S, et al. Challenges and recent advances in MOF-polymer composite membranes for gas separation[J]. Inorganic Chemistry Frontiers, 2016, 3(7): 896-909. |
21 | He Z, Jiang W, Schalley C A. Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture[J]. Chemical Society Reviews, 2015, 44(3): 779-789. |
22 | Qi G, Wu Z, Wang H. Highly conductive and semitransparent free-standing polypyrrole films prepared by chemical interfacial polymerization[J]. Journal of Materials Chemistry C, 2013, 1(42): 7102-7110. |
23 | Breitenkamp K, Emrick T. Novel polymer capsules from amphiphilic graft copolymers and cross-metathesis[J]. Journal of the American Chemical Society, 2003, 125(40): 12070-12071. |
24 | Luo Y, Gu H. A general strategy for nano-encapsulation via interfacially confined living/controlled radical miniemulsion polymerization[J]. Macromolecular Rapid Communications, 2006, 27(1): 21-25. |
25 | Luo Y, Gu H. Nanoencapsulation via interfacially confined reversible addition fragmentation transfer (RAFT) miniemulsion polymerization[J]. Polymer, 2007, 48(11): 3262-3272. |
26 | Klumperman B. Styrene/maleic anhydride macro-RAFT-mediated encapsulation[J]. Macromolecular Chemistry and Physics, 2006, 207(10): 861-863. |
27 | Lu F, Luo Y, Li B. pH effects on the synthesis of nanocapsules via interfacial miniemulsion polymerization mediated by amphiphilic RAFT agent with the R group of poly(methyl acrylic acid-ran-styrene)[J]. Industrial & Engineering Chemistry Research, 2010, 49(5): 2206-2212. |
28 | Torza S, Mason S G. Three-phase interactions in shear and electrical fields[J]. Journal of Colloid and Interface Science, 1970, 33(1): 67-83. |
29 | Chen H, Luo Y. Facile synthesis of nanocapsules and hollow nanoparticles consisting of fluorinated polymer shells by interfacial raft miniemulsion polymerization[J]. Macromolecular Chemistry and Physics, 2011, 212(7): 737-743. |
30 | Sundberg D C, Casassa A P, Pantazopoulos J, et al. Morphology development of polymeric microparticles in aqueous dispersions(Ⅰ): Thermodynamic considerations[J]. Journal of Applied Polymer Science, 1990, 41(7/8): 1425-1442. |
31 | Gonzalez-Ortiz L J, Asua J M. Development of particle morphology in emulsion polymerization(1): Cluster dynamics[J]. Macromolecules, 1995, 28(9): 3135-3145. |
32 | Luo Y, Zhou X. Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(9): 2145-2154. |
33 | 朱新星. 界面RAFT细乳液聚合制备交联聚合物纳米胶囊[D]. 杭州: 浙江大学, 2008. |
Zhu X X. Fabrication of cross-linked polymeric nanocapsules via RAFT interfacial miniemulsion polymerization[D]. Hangzhou: Zhejiang University, 2008. | |
34 | 卢福军. 聚合物纳米胶囊制备新方法——RAFT细乳液界面聚合[D]. 杭州: 浙江大学, 2010. |
Lu F J. A general route to synthesize the polymeric nanocapsules: RAFT interfacial miniemulsion polymerization[D]. Hangzhou: Zhejiang University, 2010. | |
35 | Lu F, Luo Y, Li B, et al. Synthesis of thermo-sensitive nanocapsules via inverse miniemulsion polymerization using a PEO-RAFT agent[J]. Macromolecules, 2010, 43(1): 568-571. |
36 | Utama R H, Stenzel M H, Zetterlund P B. Inverse miniemulsion periphery RAFT polymerization: a convenient route to hollow polymeric nanoparticles with an aqueous core[J]. Macromolecules, 2013, 46(6): 2118-2127. |
37 | Stoffelbach F, Belardi B, Santos J M R C, et al. Use of an amphiphilic block copolymer as a stabilizer and a macroinitiator in miniemulsion polymerization under AGET ATRP conditions[J]. Macromolecules, 2007, 40(25): 8813-8816. |
38 | Li W, Matyjaszewski K, Albrecht K, et al. Reactive surfactants for polymeric nanocapsules via interfacially confined miniemulsion ATRP[J]. Macromolecules, 2009, 42(21): 8228-8233. |
39 | Li W, Yoon J A, Matyjaszewski K. Dual-reactive surfactant used for synthesis of functional nanocapsules in miniemulsion[J]. Journal of the American Chemical Society, 2010, 132(23): 7823-7825. |
40 | Thickett S C, Teo G H. Recent advances in colloidal nanocomposite design via heterogeneous polymerization techniques[J]. Polymer Chemistry, 2019, 10(23): 2906-2924. |
41 | Che Y, Zhang T, Du Y, et al. “On Water” surface‐initiated polymerization of hydrophobic monomers[J]. Angewandte Chemie International Edition, 2018, 57(50): 16380-16384. |
42 | Huang X, Wirth M J. Surface-initiated radical polymerization on porous silica[J]. Analytical Chemistry, 1997, 69(22): 4577-4580. |
43 | Mora-Barrantes I, Valentín J L, Rodríguez A, et al. Poly(styrene)/silica hybrid nanoparticles prepared via ATRP as high-quality fillers in elastomeric composites[J]. Journal of Materials Chemistry, 2012, 22(4): 1403-1410. |
44 | Radhakrishnan B, Constable A N, Brittain W J. A novel route to organic-inorganic hybrid nanomaterials[J]. Macromolecular Rapid Communications, 2008, 29(22): 1828-1833. |
45 | Ohno K, Akashi T, Huang Y, et al. Surface-initiated living radical polymerization from narrowly size-distributed silica nanoparticles of diameters less than 100 nm[J]. Macromolecules, 2010, 43(21): 8805-8812. |
46 | Ohno K, Tabata H, Tsujii Y. Surface-initiated living radical polymerization from silica particles functionalized with poly(ethylene glycol)-carrying initiator[J]. Colloid and Polymer Science, 2013, 291(1): 127-135. |
47 | Saigal T, Dong H, Matyjaszewski K, et al. Pickering emulsions stabilized by nanoparticles with thermally responsive grafted polymer brushes[J]. Langmuir, 2010, 26(19): 15200-15209. |
48 | Ejaz M, Yamamoto S, Ohno K, et al. Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the Langmuir-Blodgett and atom transfer radical polymerization techniques[J]. Macromolecules, 1998, 31(17): 5934-5936. |
49 | Matyjaszewski K, Miller P J, Shukla N, et al. Polymers at interfaces: using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator[J]. Macromolecules, 1999, 32(26): 8716-8724. |
50 | Turgman-Cohen S, Genzer J. Computer simulation of controlled radical polymerization: effect of chain confinement due to initiator grafting density and solvent quality in “grafting from” method[J]. Macromolecules, 2010, 43(22): 9567-9577. |
51 | Gao X, Feng W, Zhu S, et al. Kinetic modeling of surface-initiated atom transfer radical polymerization[J]. Macromolecular Reaction Engineering, 2010, 4(3/4): 235-250. |
52 | Esteves A, Bombalski L, Trindade T, et al. Polymer grafting from CdS quantum dots via AGET ATRP in miniemulsion[J]. Small, 2007, 3(7): 1230-1236. |
53 | Bombalski L, Dong H, Listak J, et al. Null-scattering hybrid particles using controlled radical polymerization[J]. Advanced Materials, 2007, 19(24): 4486-4490. |
54 | Zhang T, Benetti E M, Jordan R. Surface-initiated Cu0-mediated CRP for the rapid and controlled synthesis of quasi-3D structured polymer brushes[J]. ACS Macro Letters, 2019, 8(2): 145-153. |
55 | Zoppe J O, Ataman N C, Mocny P, et al. Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes[J]. Chemical Reviews, 2017, 117(3): 1105-1318. |
56 | Mocny P, Klok H. Complex polymer topologies and polymer—nanoparticle hybrid films prepared via surface-initiated controlled radical polymerization[J]. Progress in Polymer Science, 2020, 100: 101185. |
57 | Yan J, Bockstaller M R, Matyjaszewski K. Brush-modified materials: control of molecular architecture, assembly behavior, properties and applications[J]. Progress in Polymer Science, 2020, 100: 101180. |
58 | Baum M, Brittain W J. Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique[J]. Macromolecules, 2002, 35(3): 610-615. |
59 | Le-Masurier S P, Gody G, Perrier S, et al. One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and “grafting from” RAFT polymerization[J]. Polymer Chemistry, 2014, 5(8): 2816-2823. |
60 | Zhao Y, Perrier S. Synthesis of poly(methyl acrylate) grafted onto silica particles by Z-supported RAFT polymerization[J]. Macromolecular Symposia, 2007, 248(1): 94-103. |
61 | Moraes J, Ohno K, Maschmeyer T, et al. Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization[J]. Chemical Communications, 2013, 49(80): 9077-9088. |
62 | Hojjati B, Sui R, Charpentier P A. Synthesis of TiO2/PAA nanocomposite by RAFT polymerization[J]. Polymer, 2007, 48(20): 5850-5858. |
63 | Ohno K, Mori C, Akashi T, et al. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization[J]. Biomacromolecules, 2013, 14(10): 3453-3462. |
64 | Raula J, Shan J, Nuopponen M, et al. Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition-fragmentation chain-transfer polymerization[J]. Langmuir, 2003, 19(8): 3499-3504. |
65 | Badri A, Whittaker M R, Zetterlund P B. Modification of graphene/graphene oxide with polymer brushes using controlled/living radical polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50(15): 2981-2992. |
66 | Eskandari P, Abousalman-Rezvani Z, Roghani-Mamaqani H, et al. Polymer grafting on graphene layers by controlled radical polymerization[J]. Advances in Colloid and Interface Science, 2019, 273: 102021. |
67 | Jin T, Zha H, Randazzo K, et al. Local disorder facilitates chain stretching in crowded polymer brushes[J]. The Journal of Physical Chemistry Letters, 2020, 11(18): 7814-7818. |
68 | Nguyen D, Zondanos H S, Farrugia J M, et al. Pigment encapsulation by emulsion polymerization using macro-RAFT copolymers[J]. Langmuir, 2008, 24(5): 2140-2150. |
69 | Ali S I, Heuts J P A, Hawkett B S, et al. Polymer encapsulated gibbsite nanoparticles: efficient preparation of anisotropic composite latex particles by RAFT-based starved feed emulsion polymerization[J]. Langmuir, 2009, 25(18): 10523-10533. |
70 | Walheim S, Schäffer E, Mlynek J, et al. Nanophase-separated polymer films as high-performance antireflection coatings[J]. Science, 1999, 283(5401): 520-522. |
71 | Sun Z, Luo Y. Fabrication of non-collapsed hollow polymeric nanoparticles with shell thickness in the order of ten nanometres and anti-reflection coatings[J]. Soft Matter, 2011, 7(3): 871-875. |
72 | Yoldas B E, Annen M J, Bostaph J. Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation[J]. Chemistry of Materials, 2000, 12(8): 2475-2484. |
73 | Ye C H, Luo Y W, Liu X S. Synthesis of non-collapsed hollow polymeric nanoparticles with shell thickness on the order of polymer gyration radius[J]. Polymer, 2011, 52(3): 683-693. |
74 | Luo Y, Ye C. Using nanocapsules as building blocks to fabricate organic polymer nanofoam with ultra low thermal conductivity and high mechanical strength[J]. Polymer, 2012, 53(25): 5699-5705. |
75 | Sun Z, Cai C, Guo F, et al. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors[J]. Nanotechnology, 2018, 29(14): 145704-145715. |
76 | Zetterlund P B, Kagawa Y, Okubo M. Controlled/living radical polymerization in dispersed systems[J]. Chemical Reviews, 2008, 108(9): 3747-3794. |
77 | Utama R H, Guo Y, Zetterlund P B, et al. Synthesis of hollow polymeric nanoparticles for protein delivery via inverse miniemulsion periphery RAFT polymerization[J]. Chemical Communications, 2012, 48(90): 11103-11105. |
78 | Huang X, Hu J, Li Y, et al. Engineering organic/inorganic nanohybrids through RAFT polymerization for biomedical applications[J]. Biomacromolecules, 2019, 20(12): 4243-4257. |
79 | Jiang S, Van Dyk A, Maurice A, et al. Design colloidal particle morphology and self-assembly for coating applications[J]. Chemical Society Reviews, 2017, 46(12): 3792-3807. |
80 | Zgheib N, Putaux J L, Thill A, et al. Cerium oxide encapsulation by emulsion polymerization using hydrophilic macroRAFT agents[J]. Polymer Chemistry, 2013, 4(3): 607-614. |
81 | Tan D Q. The search for enhanced dielectric strength of polymer-based dielectrics: a focused review on polymer nanocomposites[J]. Journal of Applied Polymer Science, 2020, 137(33): 49379-49410. |
82 | Chen J, Wang X, Yu X, et al. High dielectric constant and low dielectric loss poly (vinylidene fluoride) nanocomposites via a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates[J]. Journal of Materials Chemistry C, 2018, 6(2): 271-279. |
83 | Huang X, Sun B, Zhu Y, et al. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications[J]. Progress in Materials Science, 2019, 100: 187-225. |
84 | Hu J, Zhang S, Tang B. 2D filler-reinforced polymer nanocomposite dielectrics for high-k dielectric and energy storage applications[J]. Energy Storage Materials, 2021, 34: 260-281. |
85 | Luo H, Zhou X, Ellingford C, et al. Interface design for high energy density polymer nanocomposites[J]. Chemical Society Reviews, 2019, 48(16): 4424-4465. |
86 | Shen Y, Lin Y H, Nan C W. Interfacial effect on dielectric properties of polymer nanocomposites filled with core-shell structured particles[J]. Advanced Functional Materials, 2007, 17(14): 2405-2410. |
87 | Yang K, Huang X, Huang Y, et al. Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application[J]. Chemistry of Materials, 2013, 25(11): 2327-2338. |
88 | Chen S, Lv X, Han X. Significantly improved energy density of BaTiO3 nanocomposites by accurate interfacial tailoring using a novel rigid-fluoro-polymer[J]. Polymer Chemistry, 2018, 9(5): 548-557. |
89 | Hu Q, Gan S, Bao Y, et al. Controlled/“living” radical polymerization-based signal amplification strategies for biosensing[J]. Journal of Materials Chemistry B, 2020, 8(16): 3327-3340. |
90 | Liu R, Zhao J, Han Q, et al. One-step assembly of a biomimetic biopolymer coating for particle surface engineering[J]. Advanced Materials, 2018, 30(38): 1802851. |
91 | de Gennes P G. Conformations of polymers attached to an interface[J]. Macromolecules, 1980, 13(5): 1069-1075. |
92 | Gehan H, Fillaud L, Chehimi M M, et al. Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced raman scattering[J]. ACS Nano, 2010, 4(11): 6491-6500. |
93 | Kumar S, Tong X, Dory Y L, et al. A CO2-switchable polymer brush for reversible capture and release of proteins[J]. Chemical Communications, 2013, 49(1): 90-92. |
94 | Zhang X, Chen Q, Wei R, et al. Design of poly ionic liquids modified cotton fabric with ion species-triggered bidirectional oil-water separation performance[J]. Journal of Hazardous Materials, 2020, 400: 123163. |
95 | Li L, Xiang Y, Yang W, et al. Embedded polyzwitterionic brush-modified nanofibrous membrane through subsurface-initiated polymerization for highly efficient and durable oil/water separation[J]. Journal of Colloid and Interface Science, 2020, 575: 388-398. |
96 | Li Y, Zhu L, Grishkewich N, et al. CO2-responsive cellulose nanofibers aerogels for switchable oil-water separation[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 9367-9373. |
97 | Liu Y, Wang X, Feng S. Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation[J]. Advanced Functional Materials, 2019, 29(29): 1902488. |
[1] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[2] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[3] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[4] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[5] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[6] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[7] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[8] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[9] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[10] | Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804. |
[11] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[12] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[13] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[14] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[15] | Wangkai XIANG, Yuanyuan LIU, Ying ZHENG, Pengju PAN. Preparation of medium- and high-molecular-weight poly(glycolic acid) by melt/solid-state polycondensation [J]. CIESC Journal, 2023, 74(2): 933-940. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||