1 |
陈思晗, 张珂, 常丽萍, 等. 传统和新型制氢方法概述[J]. 天然气化工(C1化学与化工), 2019, 44(2): 122-127.
|
|
Chen S H, Zhang K, Chang L P, et al. Overview of traditional and new hydrogen production methods[J]. Natural Gas Chemical Industry, 2019, 44(2): 122-127.
|
2 |
朱晓宇, 刘则渊. 国际氢能研究的文献计量学分析[J]. 情报杂志, 2011, 30(6): 65-69.
|
|
Zhu X Y, Liu Z Y. Biliometrics analysis of international research on hydrogen energy[J]. Journal of Intelligence, 2011, 30(6): 65-69.
|
3 |
Delgado J A, Águeda V I, Uguina M A, et al. Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: evaluation of performance in pressure swing adsorption hydrogen purification by simulation[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15414-15426.
|
4 |
Sircar S, Golden T C. Purification of hydrogen by pressure swing adsorption[J]. Fuel & Energy Abstracts, 2000, 35(5): 667-687.
|
5 |
何东荣, 周向辉, 张东辉. 利用ASPEN-ADSIM模拟变压吸附分离过程[J]. 天然气化工(C1化学与化工), 2009, 34(3): 11-15.
|
|
He D R, Zhou X H, Zhang D H. Simulation of PSA separation process by ASPEN-ADSIM[J]. Natural Gas Chemical Industry, 2009, 34(3): 11-15.
|
6 |
冯孝庭. 吸附分离技术[M]. 北京: 化学工业出版社, 2000: 32-39.
|
|
Feng X T. Adsorption Separation Technology[M]. Beijing: Chemical Industry Press, 2000: 32-39.
|
7 |
Sircar S, Waldron W E, Rao M B, et al. Hydrogen production by hybrid SMR-PSA-SSF membrane system[J]. Separation and Purification Technology, 1999, 17(1): 11-20.
|
8 |
Lopes F V S, Grande C A, Alírio E R. Activated carbon for hydrogen purification by pressure swing adsorption: multicomponent breakthrough curves and PSA performance[J]. Chemical Engineering Science, 2011, 66(3): 303-317.
|
9 |
Golmakani A, Nabavi S A, Vasilije M. Effect of impurities on ultra-pure hydrogen production by pressure vacuum swing adsorption[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 278-289.
|
10 |
Golmakani A, Fatemi S, Tamnanloo J. Investigating PSA, VSA, and TSA methods in SMR unit of refineries for hydrogen production with fuel cell specification[J]. Separation and Purification Technology, 2017, 176: 73-91.
|
11 |
Shi W R, Yang H W, Shen Y H, et al. Two-stage PSA/VSA to produce H2 with CO2 capture via steam methane reforming (SMR)[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19057-19074.
|
12 |
田涛, 刘冰, 石梅生, 等. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
|
|
Tian T, Liu B, Shi M S, et al. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds[J]. CIESC Journal, 2019, 70(3): 969-978.
|
13 |
Chai S W, Kothare M V, Sircar S. Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator[J]. Adsorption-Journal of the International Adsorption Society, 2012, 18(2): 87-102.
|
14 |
Rao V R, Kothare M V, Sircar S. Novel design and performance of a medical oxygen concentrator using a rapid pressure swing adsorption concept[J]. AIChE Journal, 2014, 60(9): 3330-3335.
|
15 |
Vemula R R, Kothare M V, Sircar S. Anatomy of a rapid pressure swing adsorption process performance[J]. AIChE Journal, 2015, 61(6): 2008-2015.
|
16 |
刘应书, 祝显强, 杨雄, 等. 快速真空变压吸附制氧实验研究[J]. 医用气体工程, 2016, 1(1): 21-24.
|
|
Liu Y S, Zhu X Q, Yang X, et al. An experimental study of rapid vacuum pressure swing adsorption for producing oxygen[J]. Medical Gases Engineering, 2016, 1(1): 21-24.
|
17 |
祝显强, 刘应书, 杨雄, 等. 中间气两步充压对快速真空变压吸附制氧的影响[J]. 化工学报, 2016, 67(10): 4264-4272.
|
|
Zhu X Q, Liu Y S, Yang X, et al. Effect of two-step pressurization with intermediate gas on rapid vacuum pressure swing adsorption process for oxygen generation[J]. CIESC Journal, 2016, 67(10): 4264-4272.
|
18 |
Vemula R R, Kothare M V, Sircar S. Performance of a medical oxygen concentrator using rapid pressure swing adsorption process: effect of feed air pressure[J]. AIChE Journal, 2016, 62(4): 1212-1215.
|
19 |
Wu C W, Vemula R R, Kothare M V, et al. Experimental study of a novel rapid pressure swing adsorption (RPSA) based medical oxygen concentrator (MOC): effect of adsorbent selectivity of N2 over O2[J]. Industrial & Engineering Chemistry Research, 2016, 55(16): 4676-4681.
|
20 |
Chai S W, Kothare M V, Sircar S. Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator[J]. Industrial & Engineering Chemistry Research, 2011, 50(14): 8703-8710.
|
21 |
Urich M D, Rama R V, Kothare M V. Multivariable model predictive control of a novel rapid pressure swing adsorption system[J]. AIChE Journal, 2018, 64(4): 1234-1245.
|
22 |
Vemula R R, Sircar S. Comments on the reliability of model simulation of a rapid pressure swing adsorption process for high-purity product[J]. Industrial & Engineering Chemistry Research, 2017, 56(31): 8991-8994.
|
23 |
Lopes F V S, Grande C A, Alírio E R. Fast-cycling VPSA for hydrogen purification[J]. Fuel, 2012, 93(1): 510-523.
|
24 |
Sharma I, Friedrich D, Golden T C, et al. Monolithic adsorbent-based rapid-cycle vacuum pressure swing adsorption process for carbon capture from small-scale steam methane reforming[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 7109-7120.
|
25 |
Yang H W, Yin C B, Jiang B, et al. Optimization and analysis of a VPSA process for N2/CH4 separation[J]. Separation and Purification Technology, 2014, 134(1): 232-240.
|
26 |
Sun W N, Shen Y H, Zhang D H, et al. A systematic simulation and proposed optimization of the pressure swing adsorption process for N2/CH4 separation under external disturbances[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7489-7501.
|
27 |
Ding Z Y, Han Z Y, Fu Q, et al. Optimization and analysis of the VPSA process for industrial-scale oxygen production[J]. Adsorption-Journal of the International Adsorption Society, 2018, 24(5): 499-516.
|
28 |
Wang Y Y, An Y X, Ding Z Y, et al. Integrated VPSA processes for air separation based on dual reflux configuration[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6562-6575.
|
29 |
Wu T B, Shen Y H, Feng L, et al. Adsorption properties of N2O on zeolite 5A, 13X, activated carbon, ZSM-5, and silica gel[J]. Journal of Chemical & Engineering Data, 2019, 64(8): 3473-3482.
|
30 |
Chen S R, Shen Y H, Guan Z B, et al. Adsorption properties of SF6 on zeolite NaY, 13X, activated carbon, and silica gel[J]. Journal of Chemical & Engineering Data, 2020, 65(8): 4044-4051.
|