CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 3338-3348.DOI: 10.11949/0438-1157.20201599
• Energy and environmental engineering • Previous Articles Next Articles
CHEN Hao1,2(),LIU Xiliang1,2,TAN Xianhong3,TIAN Xiaofeng3,YANG Shenglai1,YANG Ran2,ZHANG Chao2
Received:
2020-11-03
Revised:
2021-03-24
Online:
2021-06-05
Published:
2021-06-05
Contact:
CHEN Hao
陈浩1,2(),刘希良1,2,谭先红3,田虓丰3,杨胜来1,杨冉2,张超2
通讯作者:
陈浩
作者简介:
陈浩(1985—),男,博士,副教授,基金资助:
CLC Number:
CHEN Hao, LIU Xiliang, TAN Xianhong, TIAN Xiaofeng, YANG Shenglai, YANG Ran, ZHANG Chao. Study on the effect of surface area on the thermal behavior of crude oils with different properties[J]. CIESC Journal, 2021, 72(6): 3338-3348.
陈浩, 刘希良, 谭先红, 田虓丰, 杨胜来, 杨冉, 张超. 表面积效应对不同性质原油热力学行为影响研究[J]. 化工学报, 2021, 72(6): 3338-3348.
Add to citation manager EndNote|Ris|BibTeX
类型 | 密度/ (g/cm3) | 黏度/ (mPa·s) | 饱和烃/% | 芳香烃/% | 胶质/% | 沥青质/% |
---|---|---|---|---|---|---|
轻质油 | 0.828 | 4.73 | 72.81 | 14.23 | 9.86 | 3.1 |
重质油 | 0.931 | 2675 | 39.19 | 23.27 | 26.43 | 11.11 |
Table 1 Parameters of crude oil sample (20℃)
类型 | 密度/ (g/cm3) | 黏度/ (mPa·s) | 饱和烃/% | 芳香烃/% | 胶质/% | 沥青质/% |
---|---|---|---|---|---|---|
轻质油 | 0.828 | 4.73 | 72.81 | 14.23 | 9.86 | 3.1 |
重质油 | 0.931 | 2675 | 39.19 | 23.27 | 26.43 | 11.11 |
转化率α | 斜率 | 活化能E/ (kJ·mol-1) | 相关系数R2 |
---|---|---|---|
0.1 | -4122.4 | 32.58 | 0.959 |
0.2 | -4678.9 | 36.98 | 0.962 |
0.3 | -5145.4 | 40.66 | 0.961 |
0.4 | -5575.2 | 44.06 | 0.969 |
0.5 | -6192.5 | 48.94 | 0.978 |
0.6 | -6911.9 | 54.63 | 0.985 |
0.7 | -7853.7 | 62.07 | 0.989 |
0.8 | -9493.2 | 75.03 | 0.991 |
0.9 | -11672.1 | 92.24 | 0.998 |
1.0 | -19857.0 | 156.93 | 0.986 |
Table 2 Activation energy of LTO of pure light oil and relevant parameters
转化率α | 斜率 | 活化能E/ (kJ·mol-1) | 相关系数R2 |
---|---|---|---|
0.1 | -4122.4 | 32.58 | 0.959 |
0.2 | -4678.9 | 36.98 | 0.962 |
0.3 | -5145.4 | 40.66 | 0.961 |
0.4 | -5575.2 | 44.06 | 0.969 |
0.5 | -6192.5 | 48.94 | 0.978 |
0.6 | -6911.9 | 54.63 | 0.985 |
0.7 | -7853.7 | 62.07 | 0.989 |
0.8 | -9493.2 | 75.03 | 0.991 |
0.9 | -11672.1 | 92.24 | 0.998 |
1.0 | -19857.0 | 156.93 | 0.986 |
原油 类型 | 升温速率/ (℃/min) | LTO | FD | HTO | 燃尽温度/℃ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | |||
轻质油 | 5 | 25~387 | 260 | 86.9 | 387~481 | 458 | 5.8 | 481~574 | 526 | 7.2 | 574 |
10 | 25~402 | 298 | 85 | 402~505 | 475 | 7.6 | 505~616 | 544 | 7.4 | 616 | |
15 | 25~413 | 310 | 85.6 | 413~517 | 488 | 6.8 | 517~633 | 562 | 7.6 | 633 | |
20 | 25~434 | 331 | 86.1 | 434~535 | 498 | 7 | 535~653 | 580 | 6.6 | 653 | |
表面积效应+ 轻质油 | 5 | 25~416 | 253 | 88.3 | 416~474 | 468 | 4.1 | 474~562 | 496 | 7.6 | 562 |
10 | 25~429 | 293 | 88 | 429~495 | 489 | 5.6 | 495~605 | 531 | 5.9 | 605 | |
15 | 25~440 | 304 | 87.1 | 440~510 | 482 | 4.9 | 510~610 | 549 | 8.0 | 610 | |
20 | 25~450 | 314 | 87.5 | 450~516 | 517 | 4.3 | 517~632 | 563 | 8.1 | 632 |
Table 3 Comparison of oxidation characteristics of light oil before and after considering surface area effect
原油 类型 | 升温速率/ (℃/min) | LTO | FD | HTO | 燃尽温度/℃ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | |||
轻质油 | 5 | 25~387 | 260 | 86.9 | 387~481 | 458 | 5.8 | 481~574 | 526 | 7.2 | 574 |
10 | 25~402 | 298 | 85 | 402~505 | 475 | 7.6 | 505~616 | 544 | 7.4 | 616 | |
15 | 25~413 | 310 | 85.6 | 413~517 | 488 | 6.8 | 517~633 | 562 | 7.6 | 633 | |
20 | 25~434 | 331 | 86.1 | 434~535 | 498 | 7 | 535~653 | 580 | 6.6 | 653 | |
表面积效应+ 轻质油 | 5 | 25~416 | 253 | 88.3 | 416~474 | 468 | 4.1 | 474~562 | 496 | 7.6 | 562 |
10 | 25~429 | 293 | 88 | 429~495 | 489 | 5.6 | 495~605 | 531 | 5.9 | 605 | |
15 | 25~440 | 304 | 87.1 | 440~510 | 482 | 4.9 | 510~610 | 549 | 8.0 | 610 | |
20 | 25~450 | 314 | 87.5 | 450~516 | 517 | 4.3 | 517~632 | 563 | 8.1 | 632 |
原油 类型 | 升温速率/ (℃/min) | LTO | FD | HTO | 燃尽温度/℃ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | |||
重质油 | 5 | 25~374 | 328 | 49.2 | 374~466 | 440 | 21.0 | 466~549 | 509 | 29.1 | 549 |
10 | 25~393 | 348 | 48.9 | 393~487 | 453 | 22.8 | 487~590 | 532 | 27.2 | 590 | |
15 | 25~400 | 358 | 48.1 | 400~502 | 475 | 26.8 | 502~611 | 551 | 25.1 | 611 | |
20 | 25~408 | 369 | 47.3 | 408~521 | 492 | 28.5 | 521~633 | 574 | 23.9 | 633 | |
表面积效应+ 重质油 | 5 | 25~357 | 317 | 48.3 | 357~479 | 432 | 23.9 | 479~535 | 495 | 26.6 | 535 |
10 | 25~375 | 331 | 47.4 | 375~495 | 443 | 25.1 | 495~573 | 509 | 24.3 | 573 | |
15 | 25~402 | 343 | 46.6 | 402~511 | 471 | 28.9 | 511~601 | 517 | 23.8 | 601 | |
20 | 25~405 | 354 | 46.1 | 405~514 | 490 | 30.3 | 514~619 | 538 | 22.5 | 619 |
Table 4 Comparison of oxidation characteristics of heavy oil before and after considering surface area effect
原油 类型 | 升温速率/ (℃/min) | LTO | FD | HTO | 燃尽温度/℃ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | |||
重质油 | 5 | 25~374 | 328 | 49.2 | 374~466 | 440 | 21.0 | 466~549 | 509 | 29.1 | 549 |
10 | 25~393 | 348 | 48.9 | 393~487 | 453 | 22.8 | 487~590 | 532 | 27.2 | 590 | |
15 | 25~400 | 358 | 48.1 | 400~502 | 475 | 26.8 | 502~611 | 551 | 25.1 | 611 | |
20 | 25~408 | 369 | 47.3 | 408~521 | 492 | 28.5 | 521~633 | 574 | 23.9 | 633 | |
表面积效应+ 重质油 | 5 | 25~357 | 317 | 48.3 | 357~479 | 432 | 23.9 | 479~535 | 495 | 26.6 | 535 |
10 | 25~375 | 331 | 47.4 | 375~495 | 443 | 25.1 | 495~573 | 509 | 24.3 | 573 | |
15 | 25~402 | 343 | 46.6 | 402~511 | 471 | 28.9 | 511~601 | 517 | 23.8 | 601 | |
20 | 25~405 | 354 | 46.1 | 405~514 | 490 | 30.3 | 514~619 | 538 | 22.5 | 619 |
14 | 廖广志, 杨怀军, 蒋有伟, 等. 减氧空气驱适用范围及氧含量界限[J]. 石油勘探与开发, 2018, 45(1): 105-110. |
Liao G Z, Yang H J, Jiang Y W, et al. Applicable scope of oxygen-reduced air flooding and the limit of oxygen content[J]. Petroleum Exploration and Development, 2018, 45(1): 105-110. | |
15 | 侯胜明, 刘印华, 于洪敏, 等. 注空气过程轻质原油低温氧化动力学[J]. 中国石油大学学报(自然科学版), 2011, 35(1): 169-173. |
Hou S M, Liu Y H, Yu H M, et al. Kinetics of low temperature oxidation of light oil in air injection process[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(1): 169-173. | |
16 | 中国石油天然气总公司. 稠油油藏流体物性分析方法 原油黏度测定: [S]. 北京: 石油工业出版社, 1998. |
China National Petroleum Corporation. Analytical approach of fluid physical property for heavy-oil reservoirs: Crude oil viscosity measurements: [S]. Beijing: Petroleum Industry Press, 1998. | |
17 | Saraji S, Kharrat R, Razzaghi S, et al. Kinetic study of crude oil combustion in the presence of carbonate rock[C]//SPE Middle East Oil and Gas Show and Conference, SPE-105112-MS. Manama, Bahrain, 2007. |
18 | Pu W F, Chen Y F, Li Y B, et al. Comparison of different kinetic models for heavy oil oxidation characteristic evaluation[J]. Energy & Fuels, 2017, 31(11): 12665-12676. |
19 | Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19. |
20 | 唐君实, 关文龙, 梁金中, 等. 热重分析仪求取稠油高温氧化动力学参数[J]. 石油学报, 2013, 34(4): 775-779. |
Tang J S, Guan W L, Liang J Z, et al. Determination on high-temperature oxidation kinetic parameters of heavy oils with thermogravimetric analyzer[J]. Acta Petrolei Sinica, 2013, 34(4): 775-779. | |
21 | Mothé C G, Miranda I C. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa-Flynn-Wall isoconversional methods[J]. Journal of Thermal Analysis and Calorimetry, 2013, 113(2): 497-505. |
1 | 张方礼, 赵庆辉, 闫红星, 等. 指纹分析技术在火驱燃烧状态识别中的应用[J]. 特种油气藏, 2015, 22(6): 80-84,144-145. |
Zhang F L, Zhao Q H, Yan H X, et al. Application of signature analysis technique in identification of fire flood combustion state[J]. Special Oil &Gas Reservoirs, 2015, 22(6): 80-84,144-145. | |
2 | 田红. 石油焦与油页岩混合燃烧特性及其燃烧动力学[J]. 石油学报(石油加工), 2010, 26(2): 225-230. |
Tian H. Co-combustion characteristics and kinetics of petroleum coke and oil shale[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2010, 26(2): 225-230. | |
3 | 蒋有伟, 张义堂, 刘尚奇, 等. 低渗透油藏注空气开发驱油机理[J]. 石油勘探与开发, 2010, 37(4): 471-476. |
Jiang Y W, Zhang Y T, Liu S Q, et al. Displacement mechanisms of air injection in low permeability reservoirs[J]. Petroleum Exploration and Development, 2010, 37(4): 471-476. | |
4 | 张斌, 于聪, 崔景伟, 等. 生烃动力学模拟在页岩油原位转化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1212-1219. |
Zhang B, Yu C, Cui J W, et al. Kinetic simulation of hydrocarbon generation and its application to in situ conversion of shale oil[J]. Petroleum Exploration and Development, 2019, 46(6): 1212-1219. | |
5 | 江航, 许强辉, 马德胜, 等. 注空气开采过程中稠油结焦量影响因素[J]. 石油学报, 2016, 37(8): 1030-1036. |
Jiang H, Xu Q H, Ma D S, et al. Influence factors of coking amount during recovery of heavy oil by air injection[J]. Acta Petrolei Sinica, 2016, 37(8): 1030-1036. | |
6 | Li Y B, Chen Y F, Pu W F, et al. Low temperature oxidation characteristics analysis of ultra-heavy oil by thermal methods[J]. Journal of Industrial and Engineering Chemistry, 2017, 48: 249-258. |
7 | Yuan C D, Pu W F, Jin F Y, et al. Characterizing the fuel deposition process of crude oil oxidation in air injection[J]. Energy & Fuels, 2015, 29(11): 7622-7629. |
8 | Kok M V, Gul K G. Thermal characteristics and kinetics of crude oils and SARA fractions[J]. Thermochimica Acta, 2013, 569: 66-70. |
9 | Zhao R B, Wei Y G, Wang Z M, et al. Kinetics of low-temperature oxidation of light crude oil[J]. Energy & Fuels, 2016, 30(4): 2647-2654. |
10 | Zheng R N, Pan J J, Cai G, et al. Effects of clay minerals on the low-temperature oxidation of heavy oil[J]. Fuel, 2019, 254: 115597. |
11 | Varfolomeev M A, Nurgaliev D K, Kok M V. Calorimetric study approach for crude oil combustion in the presence of clay as catalyst[J]. Petroleum Science and Technology, 2016, 34(19): 1624-1630. |
12 | Yu X C, Qu Z, Kan C B, et al. Effect of different clay minerals on heavy oil oxidation during ignition process[J]. Energy & Fuels, 2017, 31(11): 12839-12847. |
13 | Kok M V, Gundogar A S. Effect of different clay concentrations on crude oil combustion kinetics by thermogravimetry[J]. Journal of Thermal Analysis and Calorimetry, 2010, 99(3): 779-783. |
22 | Karger-Kocsis J. Thermal analysis of polymers: fundamentals and applications[J]. Macromolecular Chemistry and Physics, 2009, 210(19): 1661. |
23 | Khansari Z, Kapadia P, Mahinpey N, et al. A new reaction model for low temperature oxidation of heavy oil: experiments and numerical modeling[J]. Energy, 2014, 64: 419-428. |
24 | Zhao R B, Wei Y G, Wang Z M, et al. Kinetics of low-temperature oxidation of light crude oil[J]. Energy & Fuels, 2016, 30(4): 2647-2654. |
25 | 王正茂, 廖广志, 蒲万芬, 等. 注空气开发中地层原油氧化反应特征[J]. 石油学报, 2018, 39(3): 314-319. |
Wang Z M, Liao G Z, Pu W F, et al. Oxidation reaction features of formation crude oil in air injection development[J]. Acta Petrolei Sinica, 2018, 39(3): 314-319. | |
26 | Ren S R, Greaves M, Rathbone R R. Air injection LTO process: an IOR technique for light-oil reservoirs[J]. SPE Journal, 2002, 7(1): 90-99. |
27 | 王玉婷, 邓君宇, 刘延民, 等. 轻质油藏注空气过程中原油低温氧化反应的O2-CO2转换率[J]. 科学技术与工程, 2014, 14(26): 50-54, 71. |
Wang Y T, Deng J Y, Liu Y M, et al. Oxygen-carbon dioxide conversion ratio in air-light oil low temperature oxidation process[J]. Science Technology and Engineering, 2014, 14(26): 50-54, 71. | |
28 | Turta A T, Chattopadhyay S K, Bhattacharya R N, et al. Current status of commercial in situ combustion projects worldwide[J]. Journal of Canadian Petroleum Technology, 2007, 46(11): 7-11. |
29 | 梁金中, 王伯军, 关文龙, 等. 稠油油藏火烧油层吞吐技术与矿场试验[J]. 石油学报, 2017, 38(3): 324-332. |
Liang J Z, Wang B J, Guan W L, et al. Technology and field test of cyclic in situ combustion in heavy oil reservoir[J]. Acta Petrolei Sinica, 2017, 38(3): 324-332. | |
30 | Shah A, Fishwick R, Wood J, et al. A review of novel techniques for heavy oil and bitumen extraction and upgrading[J]. Energy & Environmental Science, 2010, 3(6): 700. |
31 | Kok M V, Keskin C. Comparative combustion kinetics for in situ combustion process[J]. Thermochimica Acta, 2001, 369(1/2): 143-147. |
32 | 袁士宝, 宁奎, 蒋海岩, 等. 火驱燃烧状态判定试验[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 114-118. |
Yuan S B, Ning K, Jiang H Y, et al. Experiments of judging combustion state of in situ combustion[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(5): 114-118. | |
33 | Chen H, Liu X L, Jia N H, et al. The impact of the oil character and quartz sands on the thermal behavior and kinetics of crude oil[J]. Energy, 2020, 210: 118573. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[4] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[5] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[8] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[9] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[10] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[11] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[12] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[13] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[14] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[15] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||