CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4354-4360.DOI: 10.11949/0438-1157.20201665
• Energy and environmental engineering • Previous Articles Next Articles
Yu SHI1,2,Qiang JIANG1,2,Liang ZHANG1,2(),Jun LI1,2,Qian FU1,2,Xun ZHU1,2,Qiang LIAO1,2
Received:
2020-11-18
Revised:
2021-01-04
Online:
2021-08-05
Published:
2021-08-05
Contact:
Liang ZHANG
石雨1,2,蒋强1,2,张亮1,2(),李俊1,2,付乾1,2,朱恂1,2,廖强1,2
通讯作者:
张亮
作者简介:
石雨(1996—),男,博士研究生,cquietp2018shiyu @hotmail.com
基金资助:
CLC Number:
Yu SHI, Qiang JIANG, Liang ZHANG, Jun LI, Qian FU, Xun ZHU, Qiang LIAO. Effect of liquid height in regeneration reactor on performance of thermal regeneration battery[J]. CIESC Journal, 2021, 72(8): 4354-4360.
石雨, 蒋强, 张亮, 李俊, 付乾, 朱恂, 廖强. 再生反应器液面高度对热再生电池性能的影响[J]. 化工学报, 2021, 72(8): 4354-4360.
1 | Lu H Y, Price L, Zhang Q. Capturing the invisible resource: analysis of waste heat potential in Chinese industry[J]. Applied Energy, 2016, 161: 497-511. |
2 | Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
3 | Yang Y, Lee S W, Ghasemi H, et al. Charging-free electrochemical system for harvesting low-grade thermal energy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(48): 17011-17016. |
4 | Rahimi M, Straub A P, Zhang F, et al. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity[J]. Energy & Environmental Science, 2018, 11(2): 276-285. |
5 | Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461. |
6 | Xu W C, Zhang J Y, Zhao L, et al. Novel experimental research on the compression process in organic Rankine cycle (ORC)[J]. Energy Conversion and Management, 2017, 137: 1-11. |
7 | Sánchez D, Muñoz de Escalona J M, Monje B, et al. Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and organic Rankine cycle[J]. Journal of Power Sources, 2011, 196(9): 4355-4363. |
8 | Luo Y, Andresen J, Clarke H, et al. A decision support system for waste heat recovery and energy efficiency improvement in data centres[J]. Applied Energy, 2019, 250: 1217-1224. |
9 | Zhang F, Liu J, Yang W L, et al. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power[J]. Energy & Environmental Science, 2015, 8(1): 343-349. |
10 | Wang W G, Shu G Q, Tian H, et al. A numerical model for a thermally-regenerative ammonia-based flow battery using for low grade waste heat recovery[J]. Journal of Power Sources, 2018, 388: 32-44. |
11 | Rahimi M, Schoener Z, Zhu X P, et al. Removal of copper from water using a thermally regenerative electrodeposition battery[J]. Journal of Hazardous Materials, 2017, 322: 551-556. |
12 | Rahimi M, Zhu L, Kowalski K L, et al. Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane[J]. Journal of Power Sources, 2017, 342: 956-963. |
13 | Zhang F, LaBarge N, Yang W L, et al. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures[J]. ChemSusChem, 2015, 8(6): 1043-1048. |
14 | Zhu X P, Rahimi M, Gorski C A, et al. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat[J]. ChemSusChem, 2016, 9(8): 873-879. |
15 | Palakkal V M, Nguyen T, Nguyen P, et al. High power thermally regenerative ammonia-copper redox flow battery enabled by a zero gap cell design, low-resistant membranes, and electrode coatings[J]. ACS Applied Energy Materials, 2020, 3(5): 4787-4798. |
16 | Rahimi M, Kim T, Gorski C A, et al. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity[J]. Journal of Power Sources, 2018, 373: 95-102. |
17 | Wang W G, Tian H, Shu G Q, et al. A bimetallic thermally regenerative ammonia-based battery for high power density and efficiently harvesting low-grade thermal energy[J]. Journal of Materials Chemistry A, 2019, 7(11): 5991-6000. |
18 | Wang W G, Shu G Q, Tian H, et al. A bimetallic thermally-regenerative ammonia-based flow battery for low-grade waste heat recovery[J]. Journal of Power Sources, 2019, 424: 184-192. |
19 | Wang W G, Shu G Q, Zhu X P, et al. Decoupled electrolytes towards enhanced energy and high temperature performance of thermally regenerative ammonia batteries[J]. Journal of Materials Chemistry A, 2020, 8(25): 12351-12360. |
20 | Zhang L, Li Y X, Zhu X, et al. Copper foam electrodes for increased power generation in thermally regenerative ammonia-based batteries for low-grade waste heat recovery[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7408-7415. |
21 | 李彦翔, 张亮, 朱恂, 等. 传质对热可再生氨电池性能的影响[J]. 工程热物理学报, 2019, 40(3): 668-671. |
Li Y X, Zhang L, Zhu X, et al. Effect of mass transfer on the performance of membrane electrode assembly typed thermally regenerative ammonia-based battery[J]. Journal of Engineering Thermophysics, 2019, 40(3): 668-671. | |
22 | Zhang Y S, Zhang L, Li J, et al. Performance of a thermally regenerative ammonia-based flow battery with 3D porous electrodes: effect of reactor and electrode design[J]. Electrochimica Acta, 2020, 331: 135442. |
23 | Shi Y, Zhang L, Li J, et al. Cu/Ni composite electrodes for increased anodic coulombic efficiency and electrode operation time in a thermally regenerative ammonia-based battery for converting low-grade waste heat into electricity[J]. Renewable Energy, 2020, 159: 162-171. |
24 | Shi Y, Zhang L, Li J, et al. 3-D printed gradient porous composite electrodes improve anodic current distribution and performance in thermally regenerative flow battery for low-grade waste heat recovery[J]. Journal of Power Sources, 2020, 473: 228525. |
25 | Vicari F, D'Angelo A, Kouko Y, et al. On the regeneration of thermally regenerative ammonia batteries[J]. Journal of Applied Electrochemistry, 2018, 48(12): 1381-1388. |
26 | 石雨, 张亮, 李俊, 等. 热再生电池氨再生过程强化[J]. 化工学报, 2020, 71: 253-258. |
Shi Y, Zhang L, Li J, et al. Enhanced ammonia regeneration of thermal regenerated batteries[J]. CIESC Journal, 2020, 71: 253-258. | |
27 | El-Bourawi M S, Khayet M, Ma R, et al. Application of vacuum membrane distillation for ammonia removal[J]. Journal of Membrane Science, 2007, 301(1/2): 200-209. |
28 | Chang Y H, Ferng Y M. Experimental investigation on bubble dynamics and boiling heat transfer for saturated pool boiling and comparison data with previous works[J]. Applied Thermal Engineering, 2019, 154: 284-293. |
29 | Wang Q Y, Chen R K. Ultrahigh flux thin film boiling heat transfer through nanoporous membranes[J]. Nano Letters, 2018, 18(5): 3096-3103. |
30 | Shi Y, Zhang L, Li J, et al. Effect of operating parameters on the performance of thermally regenerative ammonia-based battery for low-temperature waste heat recovery[J]. Chinese Journal of Chemical Engineering, 2020, (in press). |
31 | 唐志强, 张亮, 朱恂, 等. 不同Cu2+浓度下热再生氨电池产电及Cu2+去除特性[J]. 化工学报, 2019, 70(12): 4804-4810. |
Tang Z Q, Zhang L, Zhu X, et al. Effect of Cu2+ concentration in cathode on power generation and copper removal of thermally regenerative ammonia-based battery[J]. CIESC Journal, 2019, 70(12): 4804-4810. | |
32 | Rahimi M, D'Angelo A, Gorski C A, et al. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery[J]. Journal of Power Sources, 2017, 351: 45-50. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[10] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[11] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[12] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[15] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 157
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 419
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||