CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1480-1486.DOI: 10.11949/0438-1157.20201674
• Process system engineering • Previous Articles Next Articles
GU Junfa1(),XU Mingyang2,MA Fangyuan1,LIN Zhiyu2,JI Cheng1,WANG Jingde1(),SUN Wei1
Received:
2020-12-02
Revised:
2020-12-10
Online:
2021-03-05
Published:
2021-03-05
Contact:
WANG Jingde
顾俊发1(),许明阳2,马方圆1,林治宇2,纪成1,王璟德1(),孙巍1
通讯作者:
王璟德
作者简介:
顾俊发(1992—),男,硕士研究生,CLC Number:
GU Junfa, XU Mingyang, MA Fangyuan, LIN Zhiyu, JI Cheng, WANG Jingde, SUN Wei. Support vector regression based on maximal information coefficient and its application in chemical industrial processes[J]. CIESC Journal, 2021, 72(3): 1480-1486.
顾俊发, 许明阳, 马方圆, 林治宇, 纪成, 王璟德, 孙巍. 基于MIC的支持向量回归及其在化工过程中的应用[J]. 化工学报, 2021, 72(3): 1480-1486.
Add to citation manager EndNote|Ris|BibTeX
算法 | 适用范围 | 是否标准化 | 复杂度 | 鲁棒性 |
---|---|---|---|---|
Person | 线性数据 | 是 | 低 | 低 |
Spearman | 线性,单调非线性 | 是 | 低 | 中等 |
Kendall | 线性,单调非线性 | 是 | 低 | 中等 |
阈值相关 | 线性,非线性 | 是 | 高 | 高 |
最大相位系数 | 线性,非线性 | 是 | 高 | 中等 |
相位同步相关 | 时变序列 | 是 | 中等 | 中等 |
距离相关 | 线性,非线性 | 是 | 中等 | 高 |
核密度估计 | 线性,非线性 | 否 | 高 | 高 |
最近邻算法 | 线性,非线性 | 否 | 高 | 高 |
MIC | 线性,非线性 | 是 | 低 | 高 |
Table 1 Correlation measurement algorithm
算法 | 适用范围 | 是否标准化 | 复杂度 | 鲁棒性 |
---|---|---|---|---|
Person | 线性数据 | 是 | 低 | 低 |
Spearman | 线性,单调非线性 | 是 | 低 | 中等 |
Kendall | 线性,单调非线性 | 是 | 低 | 中等 |
阈值相关 | 线性,非线性 | 是 | 高 | 高 |
最大相位系数 | 线性,非线性 | 是 | 高 | 中等 |
相位同步相关 | 时变序列 | 是 | 中等 | 中等 |
距离相关 | 线性,非线性 | 是 | 中等 | 高 |
核密度估计 | 线性,非线性 | 否 | 高 | 高 |
最近邻算法 | 线性,非线性 | 否 | 高 | 高 |
MIC | 线性,非线性 | 是 | 低 | 高 |
方法 | 类型 | 优缺点 |
---|---|---|
偏最小二乘法 | 线性 | 计算简单且可解释性强,对稳态过程具有较强的适用性 |
岭回归 | 线性 | 适用于特征数量比样本量多的问题,容易发生过拟合 |
神经元网络 | 非线性 | 能够发挥大数据优势,黑箱模型,可解释性差,泛化能力差 |
支持向量回归 | 非线性 | 有良好的推广能力,有较强的泛化能力,适用于非稳态过程 |
Table 2 Soft measurement method
方法 | 类型 | 优缺点 |
---|---|---|
偏最小二乘法 | 线性 | 计算简单且可解释性强,对稳态过程具有较强的适用性 |
岭回归 | 线性 | 适用于特征数量比样本量多的问题,容易发生过拟合 |
神经元网络 | 非线性 | 能够发挥大数据优势,黑箱模型,可解释性差,泛化能力差 |
支持向量回归 | 非线性 | 有良好的推广能力,有较强的泛化能力,适用于非稳态过程 |
变量名称 | MIC | 变量名称 | MIC |
---|---|---|---|
冷端出口温度 | 0.1354 | R204压差 | 0.5632 |
热端入口温度 | 0.0739 | F201温度 | 0.0518 |
冷端入口温度 | 0.6314 | R201温度 | 0.2371 |
热端出口温度 | 0.6437 | F202温度 | 0.0540 |
冷端入口流量 | 0.5068 | R202温度 | 0.3592 |
氢气端流量A | 0.4182 | F203温度 | 0.0544 |
冷端入口压差 | 0.1889 | R203温度 | 0.0751 |
冷端入口压力 | 0.6029 | F204温度 | 0.0621 |
循环氢压力 | 0.5825 | F201温差 | 0.0879 |
热端出口压力 | 0.1642 | F202温差 | 0.3065 |
冷端差压 | 0.1928 | F203温差 | 0.1414 |
R203压差 | 0.6065 | F204温差 | 0.0838 |
R201压差 | 0.5179 | R204压力 | 0.4207 |
R202压差 | 0.4768 |
Table 3 The result of MIC
变量名称 | MIC | 变量名称 | MIC |
---|---|---|---|
冷端出口温度 | 0.1354 | R204压差 | 0.5632 |
热端入口温度 | 0.0739 | F201温度 | 0.0518 |
冷端入口温度 | 0.6314 | R201温度 | 0.2371 |
热端出口温度 | 0.6437 | F202温度 | 0.0540 |
冷端入口流量 | 0.5068 | R202温度 | 0.3592 |
氢气端流量A | 0.4182 | F203温度 | 0.0544 |
冷端入口压差 | 0.1889 | R203温度 | 0.0751 |
冷端入口压力 | 0.6029 | F204温度 | 0.0621 |
循环氢压力 | 0.5825 | F201温差 | 0.0879 |
热端出口压力 | 0.1642 | F202温差 | 0.3065 |
冷端差压 | 0.1928 | F203温差 | 0.1414 |
R203压差 | 0.6065 | F204温差 | 0.0838 |
R201压差 | 0.5179 | R204压力 | 0.4207 |
R202压差 | 0.4768 |
序号 | 变量名称 | 序号 | 变量名称 |
---|---|---|---|
1 | 冷端入口温度 | 7 | R203压差 |
2 | 热端出口温度 | 8 | R201压差 |
3 | 冷端入口流量 | 9 | R202压差 |
4 | 氢气端流量A | 10 | R204压差 |
5 | 冷端入口压力 | 11 | R202温度 |
6 | 循环氢压力 | 12 | R204压力 |
Table 4 Auxiliary variable table
序号 | 变量名称 | 序号 | 变量名称 |
---|---|---|---|
1 | 冷端入口温度 | 7 | R203压差 |
2 | 热端出口温度 | 8 | R201压差 |
3 | 冷端入口流量 | 9 | R202压差 |
4 | 氢气端流量A | 10 | R204压差 |
5 | 冷端入口压力 | 11 | R202温度 |
6 | 循环氢压力 | 12 | R204压力 |
方法 | R2 | RMSE | S |
---|---|---|---|
SVR | 0.6563 | 0.5383 | 0.58% |
PLS | 0.5537 | 0.7844 | 0.70% |
SVR-MIC | 0.8569 | 0.2770 | 0.25% |
PLS-MIC | 0.8120 | 0.3374 | 0.30% |
Table 5 The prediction of different algorithms
方法 | R2 | RMSE | S |
---|---|---|---|
SVR | 0.6563 | 0.5383 | 0.58% |
PLS | 0.5537 | 0.7844 | 0.70% |
SVR-MIC | 0.8569 | 0.2770 | 0.25% |
PLS-MIC | 0.8120 | 0.3374 | 0.30% |
1 | 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788-800. |
Cao P F, Luo X L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64(3): 788-800. | |
2 | 罗明英, 王帆, 谭帅, 等.基于关键变量的OPLS预测方法[J].华东理工大学学报(自然科学版), 2016, 42(4): 529-536. |
Luo M Y, Wang F, Tan S, et al. OPLS prediction method based on critical variables[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2016, 42(4): 529-536. | |
3 | 郭明, 陈伟锋.基于混合准则的软测量建模辅助变量选择方法[J]. 计算机测量与控制, 2019, 27(8): 49-53+58. |
Guo M, Chen W F. Mixed criterion based secondary variables selection for soft sensor[J]. Computer Measurement and Control, 2019, 27(8): 49-53+58. | |
4 | 王孝红, 刘文光, 于宏亮.工业过程软测量研究[J].济南大学学报(自然科学版), 2009, 23(1): 80-86. |
Wang X H, Liu W G, Yu H L. Research on industrial process soft-sensor[J]. Journal of University of Jinan(Science and Technology), 2009, 23(1): 80-86. | |
5 | 王惠文, 孟洁. 多元线性回归的预测建模方法[J]. 北京航空航天大学学报, 2007, 33(4): 500-504. |
Wang H W, Meng J. Predictive modeling on multivariate linear regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(4): 500-504. | |
6 | 陈龙, 刘全利, 王霖青, 等. 基于数据的流程工业生产过程指标预测方法综述[J]. 自动化学报, 2017, 43(6): 944-954. |
Chen L, Liu Q L, Wang L Q, et al. Data-driven prediction on performance indicators in process industry: a survey[J]. Acta Automatica Sinica, 2017, 43(6): 944-954. | |
7 | Clarke S M, Griebsch J H, Simpson T W. Analysis of support vector regression for approximation of complex engineering analyses[J]. Journal of Mechanical Design, 2005, 127(6): 1077-1087. |
8 | Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets [J]. Science, 2011, 334(6062): 1518-1524. |
9 | Kinney J B, Atwal G S. Equitability, mutual information, and the maximal information coefficient[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3354-3359. |
10 | Destrero A, Mosci S, Mol C, et al. Feature selection for high-dimensional data[J]. Computational Management Science, 2009, 6(1): 25-40. |
11 | Reshef D, Reshef Y, Mitzenmacher M, et al. Equitability analysis of the maximal information coefficient, with comparisons[J]. arXiv preprint arXiv: 1301.6314, 2013.. |
12 | Lu Z, Sun J. Non-Mercer hybrid kernel for linear programming support vector regression in nonlinear systems identification[J]. Applied Soft Computing, 2009, 9(1): 94-99. |
13 | 薛美盛, 冀若阳, 王旭. 基于多元线性回归与滚动窗的NOx排放量软测量[J]. 化工自动化及仪表, 2017, 44(8): 721-724. |
Xue M S, Ji R Y, Wang X. Soft sensor for NOx emissions based on multiple linear regression and sliding window[J]. Control and Instruments in Chemical Industry, 2017, 44(8): 721-724. | |
14 | Kaneko H, Arakawa M, Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares[J]. AIChE Journal, 2009, 55(1): 87-98. |
15 | 高世伟, 王忠民, 洪梓榕. 动态偏最小二乘在软测量建模方法中的应用[J]. 自动化仪表, 2018, 39(9): 52-55. |
Gao S W, Wang Z M, Hong Z R. Application of dynamic partial least squares in soft sensing modeling[J]. Process Automation Instrumentation, 2018, 39(9): 52-55. | |
16 | 保罗, 郭旭琦, 乔铁柱, 等. 改进LSTM神经网络在磨机负荷参数软测量中的应用[J]. 中国矿山工程, 2017, 46(3): 66-69+74. |
Bao L, Guo X Q, Qiao T Z, et al. Application of improved LSTM neural network in soft sensing of mill load parameters[J]. China Mine Engineering, 2017, 46(3): 66-69+74. | |
17 | Xibilia M G, Gemelli N, Consolo G. Input variables selection criteria for data-driven soft sensors design[C]//2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC). Calabria, Italy, 2017: 362-367. |
18 | 邱禹, 刘乙奇, 吴菁, 等. 基于深层神经网络的多输出自适应软测量建模[J]. 化工学报, 2018, 69(7): 3101-3113. |
Qiu Y, Liu Y Q, Wu J, et al. A self-adaptive multi-output soft sensor modeling based on deep neural network[J]. CIESC Journal, 2018, 69(7): 3101-3113. | |
19 | 朱宝, 乔俊飞. 基于自编码神经网络特征提取的回声状态网络研究及过程建模应用[J]. 化工学报, 2019, 70(12): 4770-4776. |
Zhu B, Qiao J F. Features extracted from auto-encoder based echo state network and its applications to process modeling[J]. CIESC Journal, 2019, 70(12): 4770-4776. | |
20 | 王定成, 方廷健, 高理富, 等. 支持向量机回归在线建模及应用[J]. 控制与决策, 2003, 18(1): 89-91. |
Wang D C, Fang T J, Gao L F, et al. Support vector machines regression on-line modelling and its application[J]. Control and Decision, 2003, 18(1): 89-91. | |
21 | 高世伟, 赵力. 一种基于支持向量机的软测量建模方法[J]. 自动化仪表, 2017, 38(7): 42-45. |
Gao S W, Zhao L. A soft measurement modeling method based on support vector machine[J]. Process Automation Instrumentation, 2017, 38(7): 42-45. | |
22 | Cheng Y, Hu J. Nonlinear system identification based on SVR with quasi-linear kernel[C]//The 2012 International Joint Conference on Neural Networks (IJCNN). Brisbane, QLD, Australia, 2012: 1-8. |
23 | Lau K W, Wu Q H. Local prediction of non-linear time series using support vector regression[J]. Pattern Recognition, 2008, 41(5): 1539-1547. |
24 | 王俊凯, 乔非, 祝军, 等. 基于支持向量机的烧结能耗及性能指标预测模型[J]. 同济大学学报(自然科学版), 2014, 42(8): 1256-1260. |
Wang J K, Qiao F, Zhu J, et al. SVR-based predictive models of energy consumption and performance criteria for sintering[J]. Journal of Tongji University(Natural Science), 2014, 42(8): 1256-1260. | |
25 | 吴雪梅, 刘志强, 张天龙, 等. 双模型结合进一步降低预测均方根误差和均方根相对误差的方法[J]. 分析化学, 2015, 43(5): 754-758. |
Wu X M, Liu Z Q, Zhang T L, et al. A method based on double models combination to further reduce root-mean-square error and relative error of prediction[J]. Chinese Journal of Analytical Chemistry, 2015, 43(5): 754-758. | |
26 | 朱哲熹, 李颖, 毛凯田, 等. 基于支持向量回归方法的石脑油裂解产物关键组分相对含量预测[J]. 计算机与应用化学, 2018, 35(9): 740-745. |
Zhu Z X, Li Y, Mao K T, et al. Support vector regression (SVR) method for the relative content prediction of key components in naphtha cracking product[J]. Computers and Applied Chemistry, 2018, 35(9): 740-745. | |
27 | 代敏, 雷兵, 夏峰. 连续催化重整装置结垢问题及解决措施[J]. 石油炼制与化工, 2019, 50(8): 13-16. |
Dai M, Lei B, Xia F. Sacaling problems in continuous catalytic reforming unit and solutions [J]. Petroleum Processing and Petrochemicals, 2019, 50(8): 13-16. | |
28 | 杨帆. 连续重整装置焊板式换热器化学清洗[J]. 广州化工, 2019, 47(13): 165-168. |
Yang F. Chemical cleaning for welded plate heat exchanger of continuous reforming unit[J]. Guangzhou Chemical Industry, 2019, 47(13): 165-168. | |
29 | 肖建, 于龙, 白裔峰. 支持向量回归中核函数和超参数选择方法综述[J]. 西南交通大学学报, 2008, 43(3): 297-303. |
Xiao J, Yu L, Bai Y F. Survey of the selection of kernels and hyper-parameters in support vector regression[J]. Journal of Southwest Jiaotong University, 2008, 43(3): 297-303. | |
30 | Üstün B, Melssen W J, Oudenhuijzen M, et al. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization[J]. Analytica Chimica Acta, 2005, 544(1/2): 292-305. |
[1] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[2] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[3] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
[4] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[5] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[6] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[7] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[8] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[9] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[10] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[11] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[12] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[13] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[14] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[15] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||