CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 1369-1378.DOI: 10.11949/0438-1157.20211444
• Energy and environmental engineering • Previous Articles Next Articles
Maolin YE1,2(),Fenghua TAN1,Yuping LI1(),Yuhe LIAO1,Chenguang WANG1(),Longlong MA1
Received:
2021-10-12
Revised:
2021-12-22
Online:
2022-03-14
Published:
2022-03-15
Contact:
Yuping LI,Chenguang WANG
叶茂林1,2(),谭烽华1,李宇萍1(),廖玉河1,王晨光1(),马隆龙1
通讯作者:
李宇萍,王晨光
作者简介:
叶茂林(1996—),男,硕士研究生,基金资助:
CLC Number:
Maolin YE, Fenghua TAN, Yuping LI, Yuhe LIAO, Chenguang WANG, Longlong MA. Life cycle environmental impact assessment of mixed alcohol via gasification of agricultural and forestry residues and catalytic synthesis[J]. CIESC Journal, 2022, 73(3): 1369-1378.
叶茂林, 谭烽华, 李宇萍, 廖玉河, 王晨光, 马隆龙. 农林废弃物气化合成混合醇生命周期环境影响分析[J]. 化工学报, 2022, 73(3): 1369-1378.
Add to citation manager EndNote|Ris|BibTeX
原料 | 工业分析/%(质量) | 元素分析/%(质量,干基) | 低位热值/(MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
灰分 | 可挥发分 | 固定碳 | 含水量 | C | H | O | N | S | |||
玉米秸秆[ | 6.6 | 64.5 | 28.9 | 50.0 | 39.8 | 5.08 | 47.4 | 0.94 | 0.23 | 13.5 | |
木屑[ | 0.9 | 83.8 | 15.3 | 50.0 | 50.9 | 6.04 | 41.9 | 0.17 | 0.09 | 18.6 |
Table 1 Proximate and ultimate analysis of biomass feedstocks
原料 | 工业分析/%(质量) | 元素分析/%(质量,干基) | 低位热值/(MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
灰分 | 可挥发分 | 固定碳 | 含水量 | C | H | O | N | S | |||
玉米秸秆[ | 6.6 | 64.5 | 28.9 | 50.0 | 39.8 | 5.08 | 47.4 | 0.94 | 0.23 | 13.5 | |
木屑[ | 0.9 | 83.8 | 15.3 | 50.0 | 50.9 | 6.04 | 41.9 | 0.17 | 0.09 | 18.6 |
项目 | 玉米秸秆混合醇 | 木屑混合醇 | |||
---|---|---|---|---|---|
质量/kg | 能量/(MJ/kg原料) | 质量/kg | 能量/(MJ/kg原料) | ||
输入 | |||||
原料 | 1 | 13.5 | 1 | 18.6 | |
输出 | |||||
混合醇 | 0.15 | 4.0 | 0.31 | 8.52 | |
制取过程 | |||||
电耗 | 0.73 | 1.17 | |||
蒸汽消耗 | 0.29 | 0.45 | |||
能量效率/% | 29.7 | 45.8 |
Table 2 Energy analysis for mixed alcohol production
项目 | 玉米秸秆混合醇 | 木屑混合醇 | |||
---|---|---|---|---|---|
质量/kg | 能量/(MJ/kg原料) | 质量/kg | 能量/(MJ/kg原料) | ||
输入 | |||||
原料 | 1 | 13.5 | 1 | 18.6 | |
输出 | |||||
混合醇 | 0.15 | 4.0 | 0.31 | 8.52 | |
制取过程 | |||||
电耗 | 0.73 | 1.17 | |||
蒸汽消耗 | 0.29 | 0.45 | |||
能量效率/% | 29.7 | 45.8 |
项目 | 玉米秸秆 | 木屑 |
---|---|---|
农林业阶段 | ||
氮肥/g | 0.70 | 0.06 |
磷肥/g | 0.21 | 0.02 |
钾肥/g | 0.84 | 0.04 |
复合肥/g | 0.04 | |
柴油/g | 0.37 | 0.08 |
农药/mg | 10.9 | 9.10 |
电力/Wh | 2.46 | |
土壤排放CO2/g | 22.9 | |
土壤排放N2O/mg | 18.3 | 0.4 |
收储运阶段 | ||
柴油/g | 0.57 | 0.55 |
电力/Wh | 5.39 | |
运输/(kg?km) | 12.5 | 5.87 |
制取阶段 | ||
干基原料(生物源碳)/kg | 0.25(0.10) | 0.12(0.06) |
橄榄石/g | 0.66 | 0.33 |
氧化镁/mg | 73.2 | 4.39 |
补充水/kg | 0.15 | 0.08 |
催化剂/mg | 2.71 | 0.62 |
水处理试剂/mg | 2.89 | 2.07 |
混合醇碳(生物源)/kg | 0.02 | 0.02 |
烟气排放碳(生物源)/kg | 0.08 | 0.04 |
废物排放碳(生物源)/kg | 1.4×10-6 | 1.25×10-6 |
醇运输阶段/(kg?km) | 3.66 | 3.66 |
Table 3 Main life cycle inventory for 1 MJ mixed alcohols
项目 | 玉米秸秆 | 木屑 |
---|---|---|
农林业阶段 | ||
氮肥/g | 0.70 | 0.06 |
磷肥/g | 0.21 | 0.02 |
钾肥/g | 0.84 | 0.04 |
复合肥/g | 0.04 | |
柴油/g | 0.37 | 0.08 |
农药/mg | 10.9 | 9.10 |
电力/Wh | 2.46 | |
土壤排放CO2/g | 22.9 | |
土壤排放N2O/mg | 18.3 | 0.4 |
收储运阶段 | ||
柴油/g | 0.57 | 0.55 |
电力/Wh | 5.39 | |
运输/(kg?km) | 12.5 | 5.87 |
制取阶段 | ||
干基原料(生物源碳)/kg | 0.25(0.10) | 0.12(0.06) |
橄榄石/g | 0.66 | 0.33 |
氧化镁/mg | 73.2 | 4.39 |
补充水/kg | 0.15 | 0.08 |
催化剂/mg | 2.71 | 0.62 |
水处理试剂/mg | 2.89 | 2.07 |
混合醇碳(生物源)/kg | 0.02 | 0.02 |
烟气排放碳(生物源)/kg | 0.08 | 0.04 |
废物排放碳(生物源)/kg | 1.4×10-6 | 1.25×10-6 |
醇运输阶段/(kg?km) | 3.66 | 3.66 |
Impact category | Corn stalk | Wood chips | Ratio |
---|---|---|---|
GWP/(g CO2 eq.) | 51.8 | 5.63 | 9.2 |
ODP/(mg CFC11 eq.) | 0.39 | 0.021 | 18.3 |
PM2.5/(mg PM2.5 eq.) | 47.8 | 14.7 | 3.25 |
AP/(mg SO2 eq.) | 110.8 | 31.2 | 3.55 |
FEP/(mg P eq.) | 5.22 | 0.52 | 10.1 |
MEP/(mg N eq.) | 2.26 | 0.17 | 13.1 |
TEP/(kg 1,4-DCB) | 0.105 | 0.036 | 2.93 |
HTP/(kg 1,4-DCB) | 0.021 | 0.003 | 7.73 |
FDP/MJ | 0.23 | 0.069 | 3.31 |
Table 4 Characterized results of environmental impact for 1 MJ mixed alcohols
Impact category | Corn stalk | Wood chips | Ratio |
---|---|---|---|
GWP/(g CO2 eq.) | 51.8 | 5.63 | 9.2 |
ODP/(mg CFC11 eq.) | 0.39 | 0.021 | 18.3 |
PM2.5/(mg PM2.5 eq.) | 47.8 | 14.7 | 3.25 |
AP/(mg SO2 eq.) | 110.8 | 31.2 | 3.55 |
FEP/(mg P eq.) | 5.22 | 0.52 | 10.1 |
MEP/(mg N eq.) | 2.26 | 0.17 | 13.1 |
TEP/(kg 1,4-DCB) | 0.105 | 0.036 | 2.93 |
HTP/(kg 1,4-DCB) | 0.021 | 0.003 | 7.73 |
FDP/MJ | 0.23 | 0.069 | 3.31 |
1 | Dutta A, Talmadge M, Hensley J, et al. Techno-economics for conversion of lignocellulosic biomass to ethanol by indirect gasification and mixed alcohol synthesis[J]. Environmental Progress & Sustainable Energy, 2012, 31(2): 182-190. |
2 | Gainey B, Yan Z M, Lawler B. Autoignition characterization of methanol, ethanol, propanol, and butanol over a wide range of operating conditions in LTC/HCCI[J]. Fuel, 2021, 287: 119495. |
3 | D'Amato D, Gaio M, Semenzin E. A review of LCA assessments of forest-based bioeconomy products and processes under an ecosystem services perspective[J]. Science of the Total Environment, 2020, 706: 135859. |
4 | Hauschild M Z, Goedkoop M, Guinée J, et al. Identifying best existing practice for characterization modeling in life cycle impact assessment[J]. International Journal of Life Cycle Assessment, 2013, 18(3): 683-697. |
5 | Peng H, Wang B F, Yang F L, et al. Study on the environmental effects of heavy metals in coal gangue and coal combustion by ReCiPe2016 for life cycle impact assessment[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1402-1408. |
6 | Bogacka M. Best practice in environmental impact evaluation based on LCA-methodologies review[C]// 14th International Multidisciplinary Scientific GeoConference & EXPO SGEM 2014. Albena, Bulgaria, 2014: 101-108. |
7 | Cavalett O, Chagas M F, Seabra J E A, et al. Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods[J]. International Journal of Life Cycle Assessment, 2013, 18(3): 647-658. |
8 | Turk J, Oven P, Poljanšek I, et al. Evaluation of an environmental profile comparison for nanocellulose production and supply chain by applying different life cycle assessment methods[J]. Journal of Cleaner Production, 2020, 247: 119107. |
9 | Roy P, Tokuyasu K, Orikasa T, et al. A review of life cycle assessment (LCA) of bioethanol from lignocellulosic biomass[J]. Japan Agricultural Research Quarterly: JARQ, 2012, 46(1): 41-57. |
10 | 郭鹏坤, 李攀, 常春, 等. 计算机模拟技术在生物质转化中的应用研究进展[J]. 化工进展, 2020, 39(8): 3027-3040. |
Guo P K, Li P, Chang C, et al. Advances in the application of computer simulation technology in biomass conversion[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3027-3040. | |
11 | Patel M, Zhang X L, Kumar A. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1486-1499. |
12 | Al-Mawali K S, Osman A I, Al-Muhtaseb A H, et al. Life cycle assessment of biodiesel production utilising waste date seed oil and a novel magnetic catalyst: a circular bioeconomy approach[J]. Renewable Energy, 2021, 170: 832-846. |
13 | 郭金凤, 王树荣, 尹倩倩, 等. 生物质经甲醇法和费托法制取汽油的生命周期评价[J]. 太阳能学报, 2015, 36(9): 2052-2058. |
Guo J F, Wang S R, Yin Q Q, et al. Life cycle assessment comparision of biomass to gasoline through MTG and STG methods[J]. Acta Energiae Solaris Sinica, 2015, 36(9): 2052-2058. | |
14 | 张溪, 张立龙, 李瑞, 等. 基于能量集成的秸秆生物质快速热解生命周期评价[J]. 化工学报, 2021, 72(5): 2792-2800. |
Zhang X, Zhang L L, Li R, et al. Life cycle assessment of straw fast pyrolysis based on energy integration[J]. CIESC Journal, 2021, 72(5): 2792-2800. | |
15 | Lima  M F, Torres E A, Kiperstok A, et al. Environmental impacts of the biodiesel production chain of cotton seed in Bahia, Brazil[J]. Clean Technologies and Environmental Policy, 2017, 19(5): 1523-1534. |
16 | 王康, 潘忠, 李永恒, 等. 陈化水稻燃料乙醇全生命周期净能量分析[J]. 生物加工过程, 2019, 17(4): 359-364. |
Wang K, Pan Z, Li Y H, et al. Net energy analysis for aged rice fuel ethanol in life cycle[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(4): 359-364. | |
17 | Nogueira G P, McManus M C, Leak D J, et al. Are eucalyptus harvest residues a truly burden-free biomass source for bioenergy? A deeper look into biorefinery process design and life cycle assessment[J]. Journal of Cleaner Production, 2021, 299: 126956. |
18 | 衡丽君. 生物质定向热解制多元醇燃料过程模拟及全生命周期碳足迹研究[D]. 南京: 东南大学, 2019. |
Heng L J. Study on process simulation of producing polyol fuel via oriented pyrolysis of biomass and full life cycle carbon footprint[D]. Nanjing: Southeast University, 2019. | |
19 | Heng L J, Zhang H Y, Xiao J, et al. Life cycle assessment of polyol fuel from corn stover via fast pyrolysis and upgrading[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2733-2740. |
20 | Ardolino F, Arena U. Biowaste-to-biomethane: an LCA study on biogas and syngas roads[J]. Waste Management, 2019, 87: 441-453. |
21 | Daystar J, Reeb C, Venditti R, et al. Life-cycle assessment of bioethanol from pine residues via indirect biomass gasification to mixed alcohols[J]. Forest Products Journal, 2012, 62(4): 314-325. |
22 | Daystar J, Reeb C, Gonzalez R, et al. Environmental life cycle impacts of cellulosic ethanol in the southern US produced from loblolly pine, eucalyptus, unmanaged hardwoods, forest residues, and switchgrass using a thermochemical conversion pathway[J]. Fuel Processing Technology, 2015, 138: 164-174. |
23 | Reyes Valle C, Villanueva Perales A L, Vidal-Barrero F, et al. Integrated economic and life cycle assessment of thermochemical production of bioethanol to reduce production cost by exploiting excess of greenhouse gas savings[J]. Applied Energy, 2015, 148: 466-475. |
24 | 陶炜, 肖军, 杨凯. 生物质气化费托合成制航煤生命周期评价[J]. 中国环境科学, 2018, 38(1): 383-391. |
Tao W, Xiao J, Yang K. Life cycle assessment of jet fuel from biomass gasification and Fischer-Tropsch synthesis[J]. China Environmental Science, 2018, 38(1): 383-391. | |
25 | Soam S, Kumar R, Gupta R P, et al. Life cycle assessment of fuel ethanol from sugarcane molasses in northern and western India and its impact on Indian biofuel programme[J]. Energy, 2015, 83: 307-315. |
26 | Ou L W, Li B Y, Dang Q, et al. Understanding uncertainties in the economic feasibility of transportation fuel production using biomass gasification and mixed alcohol synthesis[J]. Energy Technology, 2016, 4(3): 441-448. |
27 | Wang C B, Chang Y, Zhang L X, et al. Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: system boundary and parameters[J]. Energy, 2018, 158: 121-127. |
28 | Krzyżaniak M, Stolarski M J, Warmiński K. Life cycle assessment of poplar production: environmental impact of different soil enrichment methods[J]. Journal of Cleaner Production, 2019, 206: 785-796. |
29 | Rajagopalan N, Venditti R, Kelley S, et al. Multi-attribute uncertainty analysis of the life cycle of lignocellulosic feedstock for biofuel production[J]. Biofuels Bioproducts and Biorefining, 2017, 11(2): 269-280. |
30 | Huijbregts M A J, Steinmann Z J N, Elshout P M F, et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level[J]. International Journal of Life Cycle Assessment, 2017, 22(2): 138-147. |
31 | Yang W, Zhu Y J, Cheng W, et al. Characteristics of particulate matter emitted from agricultural biomass combustion [J]. Energy & Fuels, 2017, 31(7): 7493-7501. |
32 | Phillips S, Aden A, Jechura J, et al. Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass[R]. Office of Scientific and Technical Information (OSTI), 2007. |
33 | 李巧. 基于㶲理论的生物质分级气化制氢系统的综合性能评价[D]. 南京: 东南大学, 2019. |
Li Q. Integrated performance evaluation of hydrogen production from biomass staged-gasification based on exergy theory[D]. Nanjing: Southeast University, 2019. | |
34 | 熊简安然, 张丛志, 张佳宝, 等. 不同施氮水平下玉米农田土壤呼吸及碳平衡研究[J]. 中国农学通报, 2017, 33(1): 89-95. |
Xiong J A R, Zhang C Z, Zhang J B, et al. Soil respiration and carbon balance under different nitrogen application levels in maize field[J]. Chinese Agricultural Science Bulletin, 2017, 33(1): 89-95. | |
35 | 张黛静, 胡晓, 马建辉, 等. 耕作和培肥对豫中区小麦-玉米轮作系统土壤氮平衡和温室气体排放的影响[J]. 应用生态学报, 2021, 32(5): 1753-1760. |
Zhang D J, Hu X, Ma J H, et al. Effects of tillage and fertility on soil nitrogen balance and greenhouse gas emissions in a wheat-maize rotation system in Central Henan Province, China[J]. Chinese Journal of Applied Ecology 2021, 32(5): 1753-1760. | |
36 | Wong A, Zhang H, Kumar A. Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass[J]. Water Research, 2016, 102: 330-345. |
37 | 吕子婷, 仲兆平, 石坤, 等. 稻壳热解提质制取生物油的LCA分析[J]. 中国环境科学, 2017, 37(5): 1844-1851. |
Lyu Z T, Zhong Z P, Shi K, et al. Life cycle assessment of biofuels production via rice husk fast pyrolysis and upgrading[J]. China Environmental Science, 2017, 37(5): 1844-1851. | |
38 | Iribarren D, Susmozas A, Dufour J. Life-cycle assessment of Fischer-Tropsch products from biosyngas[J]. Renewable Energy, 2013, 59: 229-236. |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[4] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[5] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[6] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[7] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[8] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[9] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[10] | Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts [J]. CIESC Journal, 2023, 74(3): 1082-1091. |
[11] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[12] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[13] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[14] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[15] | Peng QIU, Yang HAN, Jianliang XU, Fuchen WANG, Zhenghua DAI. Study of EDC parameters for predicting entrained flow coal gasification [J]. CIESC Journal, 2023, 74(1): 428-437. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||