CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3696-3705.DOI: 10.11949/0438-1157.20210051
• Catalysis, kinetics and reactors • Previous Articles Next Articles
WANG Jiexiang1,2(),GUAN Lei2,YE Songshou1,ZHENG Jinbao1,CHEN Binghui1()
Received:
2021-01-10
Revised:
2021-04-09
Online:
2021-07-05
Published:
2021-07-05
Contact:
CHEN Binghui
通讯作者:
陈秉辉
作者简介:
王结祥(1985—),男,博士,基金资助:
CLC Number:
WANG Jiexiang, GUAN Lei, YE Songshou, ZHENG Jinbao, CHEN Binghui. N-Heterocyclic organocatalyst for carbon dioxide cycloaddition: weak synergistic effect of imidazolium[J]. CIESC Journal, 2021, 72(7): 3696-3705.
王结祥, 关磊, 叶松寿, 郑进保, 陈秉辉. 氮杂环有机催化CO2环加成反应:咪唑环的弱协同效应[J]. 化工学报, 2021, 72(7): 3696-3705.
Add to citation manager EndNote|Ris|BibTeX
Entry | Temp./℃ | Cat.∶PO | Initial pressure/MPa | Time/h | PC yield/% | PC selectivity/% |
---|---|---|---|---|---|---|
1 | 80 | 1.5 g∶15 ml | 4 | 10 | 59.2 | 98.8 |
2 | 100 | 1.5 g∶15 ml | 4 | 10 | 81.3 | 99.0 |
3 | 120 | 1.5 g∶15 ml | 4 | 10 | 97.4 | 99.5 |
4 | 140 | 1.5 g∶15 ml | 4 | 10 | 99.8 | 99.3 |
5 | 120 | 3.0 g∶30 ml | 4 | 10 | 95.3 | 99.5 |
6 | 120 | 0.5 g∶15 ml | 4 | 10 | 96.6 | 99.6 |
7 | 120 | 0.5 g∶15 ml | 4 | 10 | 96.1 | 99.8 |
Table 1 Reaction condition optimization for PS-Im to catalyzed CO2 cycloaddition
Entry | Temp./℃ | Cat.∶PO | Initial pressure/MPa | Time/h | PC yield/% | PC selectivity/% |
---|---|---|---|---|---|---|
1 | 80 | 1.5 g∶15 ml | 4 | 10 | 59.2 | 98.8 |
2 | 100 | 1.5 g∶15 ml | 4 | 10 | 81.3 | 99.0 |
3 | 120 | 1.5 g∶15 ml | 4 | 10 | 97.4 | 99.5 |
4 | 140 | 1.5 g∶15 ml | 4 | 10 | 99.8 | 99.3 |
5 | 120 | 3.0 g∶30 ml | 4 | 10 | 95.3 | 99.5 |
6 | 120 | 0.5 g∶15 ml | 4 | 10 | 96.6 | 99.6 |
7 | 120 | 0.5 g∶15 ml | 4 | 10 | 96.1 | 99.8 |
Catalyst | Reaction time/h | Yield/% | Selectivity/% |
---|---|---|---|
PS-Mim | 10 | 62.5 | 98.1 |
PS-Mim-ZnCl2 | 7 | 97.1 | 92.5 |
PS-Im | 10 | 97.4 | 99.0 |
PS-Im-Ep-TEPA | 8 | 98.7 | 94.6 |
Table 2 CO2 cycloaddition catalyzed by PS-supported series
Catalyst | Reaction time/h | Yield/% | Selectivity/% |
---|---|---|---|
PS-Mim | 10 | 62.5 | 98.1 |
PS-Mim-ZnCl2 | 7 | 97.1 | 92.5 |
PS-Im | 10 | 97.4 | 99.0 |
PS-Im-Ep-TEPA | 8 | 98.7 | 94.6 |
1 | Dang S S, Yang H Y, Gao P, et al. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation[J]. Catalysis Today, 2019, 330: 61-75. |
2 | Li Z L, Qu Y Z, Wang J J, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule, 2019, 3(2): 570-583. |
3 | 周柒, 丁红蕾, 郭得通, 等. CO2催化氢化制清洁能源的研究进展及趋势[J]. 化工学报, 2020, 71(8): 3428-3443. |
Zhou Q, Ding H L, Guo D T, et al. Recent advances in catalytic methods of CO2 hydrogenation to clean energy[J]. CIESC Journal, 2020, 71(8): 3428-3443. | |
4 | Tortajada A, Juliá-Hernández F, Börjesson M, et al. Transition-metal-catalyzed carboxylation reactions with carbon dioxide[J]. Angewandte Chemie International Edition, 2018, 57(49): 15948-15982. |
5 | Gao J, Song Q W, He L N, et al. Preparation of polystyrene-supported Lewis acidic Fe(Ⅲ) ionic liquid and its application in catalytic conversion of carbon dioxide[J]. Tetrahedron, 2012, 68(20): 3835-3842. |
6 | Yang C K, Chen Y L, Xu P, et al. Facile synthesis of zinc halide-based ionic liquid for efficient conversion of carbon dioxide to cyclic carbonates[J]. Molecular Catalysis, 2020, 480: 110637. |
7 | Ren W M, Liu Y, Lu X B. Bifunctional aluminum catalyst for CO2 fixation: regioselective ring opening of three-membered heterocyclic compounds[J]. The Journal of Organic Chemistry, 2014, 79(20): 9771-9777. |
8 | Chen Y, Qiu R H, Xu X H, et al. Organoantimony and organobismuth complexes for CO2 fixation[J]. RSC Advances, 2014, 4(23): 11907-11918. |
9 | Chen Y L, Xu P, Arai M, et al. Cycloaddition of carbon dioxide to epoxides for the synthesis of cyclic carbonates with a mixed catalyst of layered double hydroxide and tetrabutylammonium bromide at ambient temperature[J]. Advanced Synthesis & Catalysis, 2019, 361(2): 335-344. |
10 | Sperandio C, Rodriguez J, Quintard A. Organocatalytic carbon dioxide fixation to epoxides by perfluorinated 1, 3, 5-triols catalysts[J]. Organic & Biomolecular Chemistry, 2020, 18(14): 2637-2640. |
11 | Zhang Q, Yu P, Lei B, et al. Efficient solvent-free synthesis of cyclic carbonates from the cycloaddition of carbon dioxide and epoxides catalyzed by new imidazolinium functionalized metal complexes under 0.1 MPa[J]. Catalysis Letters, 2020, 150(9): 2537-2548. |
12 | 刘宁, 陈飞, 陶晟. 氢键给体促进有机催化的CO2与环氧化物的环加成反应[J]. 科学通报, 2020, 65(31): 3373-3388. |
Liu N, Chen F, Tao S. Hydrogen bond donors promoted organocatalyzed cycloaddition of CO2 with epoxides[J]. Chinese Science Bulletin, 2020, 65(31): 3373-3388. | |
13 | Han L N, Choi H J, Choi S J, et al. Ionic liquids containing carboxyl acid moieties grafted onto silica: synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide[J]. Green Chemistry, 2011, 13(4): 1023. |
14 | Watile R A, Deshmukh K M, Dhake K P, et al. Efficient synthesis of cyclic carbonate from carbon dioxide using polymer anchored diol functionalized ionic liquids as a highly active heterogeneous catalyst[J]. Catalysis Science & Technology, 2012, 2(5): 1051. |
15 | Liu N, Xie Y F, Wang C, et al. Cooperative multifunctional organocatalysts for ambient conversion of carbon dioxide into cyclic carbonates[J]. ACS Catalysis, 2018, 8(11): 9945-9957. |
16 | Wu X, Chen C T, Guo Z Y, et al. Metal- and halide-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. ACS Catalysis, 2019, 9(3): 1895-1906. |
17 | Hao Y H, Yuan D, Yao Y M. Metal-free cycloaddition of epoxides and carbon dioxide catalyzed by triazole-bridged bisphenol[J]. ChemCatChem, 2020, 12(17): 4346-4351. |
18 | Sainz Martinez A, Hauzenberger C, Sahoo A R, et al. Continuous conversion of carbon dioxide to propylene carbonate with supported ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13131-13139. |
19 | Yingcharoen P, Kongtes C, Arayachukiat S, et al. Assessing the pKa-dependent activity of hydroxyl hydrogen bond donors in the organocatalyzed cycloaddition of carbon dioxide to epoxides: experimental and theoretical study[J]. Advanced Synthesis & Catalysis, 2019, 361(2): 366-373. |
20 | Léonard G L M, Pirard S L, Belet A, et al. Optimizing support properties of heterogeneous catalysts for the coupling of carbon dioxide with epoxides[J]. Chemical Engineering Journal, 2019, 371: 719-729. |
21 | Luo R C, Chen M, Liu X Y, et al. Recent advances in CO2 capture and simultaneous conversion into cyclic carbonates over porous organic polymers having accessible metal sites[J]. Journal of Materials Chemistry A, 2020, 8(36): 18408-18424. |
22 | 赵朝阳, 罗小燕, 裴宝有, 等. 多孔超交联聚合物固载离子液体催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2021, 40(3): 1438-1448. |
Zhao Z Y, Luo X Y, Pei B Y, et al. Research progress on CO2 cycloaddition catalyzed by porous hyper-crosslinked polymers immobilized ionic liquids[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1438-1448. | |
23 | Luo R C, Liu X Y, Chen M, et al. Recent advances on imidazolium-functionalized organic cationic polymers for CO2 adsorption and simultaneous conversion into cyclic carbonates[J]. ChemSusChem, 2020, 13(16): 3945-3966. |
24 | Subramanian S, Oppenheim J, Kim D, et al. Catalytic non-redox carbon dioxide fixation in cyclic carbonates[J]. Chem, 2019, 5(12): 3232-3242. |
25 | Liu M S, Zhao P H, Gu Y Q, et al. Squaramide functionalized ionic liquids with well-designed structures: highly-active and recyclable catalyst platform for promoting cycloaddition of CO2 to epoxides[J]. Journal of CO2 Utilization, 2020, 37: 39-44. |
26 | Ma Y, Zhang Y, Chen C, et al. Insight on asym-pyrazolium ionic liquids for chemical fixation of CO2 and propylene epoxide into propylene carbonate without organic solvent and metal[J]. Industrial & Engineering Chemistry Research, 2018, 57(40): 13342-13352. |
27 | Demberelnyamba D, Yoon S J, Lee H. New epoxide molten salts: key intermediates for designing novel ionic liquids[J]. Chemistry Letters, 2004, 33(5): 560-561. |
28 | Zhu J, McKinney M A, Wilkie C A. Stabilization of polystyrene by Friedel-Crafts chemistry: effect of position of alcohol and the catalyst[J]. Polymer Degradation and Stability, 1999, 66(2): 213-220. |
29 | Darensbourg D J, Yarbrough J C, Ortiz C, et al. Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production[J]. Journal of the American Chemical Society, 2003, 125(25): 7586-7591. |
30 | Rana S, White P, Bradley M. Influence of resin cross-linking on solid-phase chemistry[J]. Journal of Combinatorial Chemistry, 2001, 3(1): 9-15. |
31 | D'Alessandro D, Smit B, Long J. Carbon dioxide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082. |
32 | Yue C T, Wang W L, Li F W. Building N-heterocyclic carbene into triazine-linked polymer for multiple CO2 utilization[J]. ChemSusChem, 2020, 13(22): 5996-6004. |
33 | Mujmule R B, Raghav Rao M P, Rathod P V, et al. Synergistic effect of a binary ionic liquid/base catalytic system for efficient conversion of epoxide and carbon dioxide into cyclic carbonates[J]. Journal of CO2 Utilization, 2019, 33: 284-291. |
34 | Bocarsly A B, Gibson Q D, Morris A J, et al. Comparative study of imidazole and pyridine catalyzed reduction of carbon dioxide at illuminated iron pyrite electrodes[J]. ACS Catalysis, 2012, 2(8): 1684-1692. |
35 | Li F W, Xiao L F, Xia C G, et al. Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system[J]. Tetrahedron Letters, 2004, 45(45): 8307-8310. |
[1] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[2] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[3] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[7] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[8] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[9] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[10] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[11] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[12] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[13] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[14] | Can YANG, Xueqi SUN, Minghua SHANG, Jian ZHANG, Xiangping ZHANG, Shaojuan ZENG. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems [J]. CIESC Journal, 2023, 74(4): 1419-1432. |
[15] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||