1 |
Sun D, Lu H F, Cao J K, et al. Flow mechanisms and solid flow rate prediction of powders discharged from hoppers with an insert[J]. Powder Technology, 2020, 367: 277-284.
|
2 |
Lu H F, Guo X L, Gong X, et al. Prediction of solid discharge rates of pulverized coal from an aerated hopper[J]. Powder Technology, 2015, 286: 645-653.
|
3 |
Huang W J, Gong X, Guo X L, et al. Discharge characteristics of cohesive fine coal from aerated hopper[J]. Powder Technology, 2009, 194(1/2): 126-131.
|
4 |
孙栋, 陆海峰, 曹嘉琨, 等. 复杂流道结构料仓的下料流率预测[J]. 化工学报, 2020, 71(3): 974-982.
|
|
Sun D, Lu H F, Cao J K, et al. Solid flow rate prediction in hoppers with complicated flow channels[J]. CIESC Journal, 2020, 71(3): 974-982.
|
5 |
赵伟, 陆海峰, 郭晓镭, 等. CPFD在细颗粒料仓下料中的应用[J]. 化工学报, 2015, 66(2): 512-521.
|
|
Zhao W, Lu H F, Guo X L, et al. Application of CPFD in hopper discharge of fine granular material[J]. CIESC Journal, 2015, 66(2): 512-521.
|
6 |
Beverloo W A, Leniger H A, van de Velde J. The flow of granular solids through orifices[J]. Chemical Engineering Science, 1961, 15(3/4): 260-269.
|
7 |
Weir G J. A mathematical model for dilating, non-cohesive granular flows in steep-walled hoppers[J]. Chemical Engineering Science, 2004, 59(1): 149-161.
|
8 |
Barletta D, Donsı̀ G, Ferrari G, et al. On the role and the origin of the gas pressure gradient in the discharge of fine solids from hoppers[J]. Chemical Engineering Science, 2003, 58(23/24): 5269-5278.
|
9 |
Datta A, Mishra B K, Das S P, et al. A DEM analysis of flow characteristics of noncohesive particles in hopper[J]. Materials and Manufacturing Processes, 2008, 23(2): 195-202.
|
10 |
Brown R L. Minimum energy theorem for flow of dry granules through apertures[J]. Nature, 1961, 191(4787): 458-461.
|
11 |
Lu H, Zhong J, Cao G P, et al. Gravitational discharge of fine dry powders with asperities from a conical hopper[J]. AIChE Journal, 2018, 64(2): 427-436.
|
12 |
Leung L Y, Mao C, Chen L P, et al. Precision of pharmaceutical powder flow measurement using ring shear tester: high variability is inherent to powders with low cohesion[J]. Powder Technology, 2016, 301: 920-926.
|
13 |
Jenike A W. Principles of powder mechanics: by R. L. Brown and J. C. Richards, international series of monographs in chemical engineering, vol.10, pergamon press, Oxford, 1970; 223 pages; price: 60s[J]. Powder Technology, 1971, 4(2): 114.
|
14 |
Freeman R. Measuring the flow properties of consolidated, conditioned and aerated powders—a comparative study using a powder rheometer and a rotational shear cell[J]. Powder Technology, 2007, 174(1/2): 25-33.
|
15 |
Tomasetta I, Barletta D, Poletto M. Correlation of powder flow properties to interparticle interactions at ambient and high temperatures[J]. Particuology, 2014, 12: 90-99.
|
16 |
Brown R L, Richards J C. Flow patterns and segregation[M]//Principles of Powder Mechanics. Amsterdam: Elsevier, 1970: 116-134.
|
17 |
Anand A, Curtis J S, Wassgren C R, et al. Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (DEM)[J]. Chemical Engineering Science, 2009, 64(24): 5268-5275.
|
18 |
Verghese T M, Nedderman R M. The discharge of fine sands from conical hoppers[J]. Chemical Engineering Science, 1995, 50(19): 3143-3153.
|
19 |
Zheng Q J, Xia B S, Pan R H, et al. Prediction of mass discharge rate in conical hoppers using elastoplastic model[J]. Powder Technology, 2017, 307: 63-72.
|
20 |
赵海亮, 由长福, 祁海鹰, 等. 细颗粒间相互作用力的研究[J]. 工程热物理学报, 2008, 29(1): 78-80.
|
|
Zhao H L, You C F, Qi H Y, et al. Mechanism of interactions between fine particles[J]. Journal of Engineering Thermophysics, 2008, 29(1): 78-80.
|
21 |
Lu H F, Guo X L, Liu Y, et al. Effect of particle size on flow mode and flow characteristics of pulverized coal[J]. KONA Powder and Particle Journal, 2015, 32: 143-153.
|
22 |
Emeriault F, Chang C S. Interparticle forces and displacements in granular materials[J]. Computers and Geotechnics, 1997, 20(3/4): 223-244.
|
23 |
Landi G, Barletta D, Poletto M. Modelling and experiments on the effect of air humidity on the flow properties of glass powders[J]. Powder Technology, 2011, 207(1/2/3): 437-443.
|
24 |
LaMarche K R, Muzzio F J, Shinbrot T, et al. Granular flow and dielectrophoresis: the effect of electrostatic forces on adhesion and flow of dielectric granular materials[J]. Powder Technology, 2010, 199(2): 180-188.
|
25 |
Hsu W Y, Huang A N, Kuo H P. Analysis of interparticle forces and particle-wall interactions by powder bed pressure drops at incipient fluidization[J]. Powder Technology, 2018, 325: 64-68.
|
26 |
Hamaker H C. The London-van der Waals attraction between spherical particles[J]. Physica, 1937, 4(10): 1058-1072.
|
27 |
Lu H F, Cao J K, Guo X L, et al. Evaluation of powder tensile strength by compression, shear and fluidization modules of the powder rheometer[J]. Chemical Engineering Research and Design, 2020, 160: 1-10.
|
28 |
García-Triñanes P, Luding S, Shi H. Tensile strength of cohesive powders[J]. Advanced Powder Technology, 2019, 30(12): 2868-2880.
|
29 |
张正德, 陆海峰, 郭晓镭, 等. 粒径对石油焦粉及煤粉的堆积与流动特性的影响[J]. 华东理工大学学报(自然科学版), 2016, 42(3): 321-328.
|
|
Zhang Z D, Lu H F, Guo X L, et al. Effect of particle size on packing characteristics and flowability of petroleum coke and coal[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(3): 321-328.
|
30 |
Yu A B, Feng C L, Zou R P, et al. On the relationship between porosity and interparticle forces[J]. Powder Technology, 2003, 130(1/2/3): 70-76.
|