CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4166-4176.DOI: 10.11949/0438-1157.20210172
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yan LI1(),Liang JIAN1,Qinyi MAO1,Chengsi PAN1,Pingping JIANG1,Yongfa ZHU2,Yuming DONG1()
Received:
2021-01-26
Revised:
2021-05-07
Online:
2021-08-05
Published:
2021-08-05
Contact:
Yuming DONG
李燕1(),蹇亮1,茅沁怡1,潘成思1,蒋平平1,朱永法2,董玉明1()
通讯作者:
董玉明
作者简介:
李燕(1996—),女,硕士研究生,基金资助:
CLC Number:
Yan LI, Liang JIAN, Qinyi MAO, Chengsi PAN, Pingping JIANG, Yongfa ZHU, Yuming DONG. Construction of Bi2O2CO3/g-C3N4 heterojunction photocatalytic complete oxidation of benzyl alcohol to benzaldehyde[J]. CIESC Journal, 2021, 72(8): 4166-4176.
李燕, 蹇亮, 茅沁怡, 潘成思, 蒋平平, 朱永法, 董玉明. 构建Bi2O2CO3/g-C3N4异质结光催化完全氧化苯甲醇至苯甲醛[J]. 化工学报, 2021, 72(8): 4166-4176.
Add to citation manager EndNote|Ris|BibTeX
Fig.5 UV-Vis diffuse reflection spectra of Bi2O2CO3, g-C3N4 and 1.5-Bi2O2CO3/g-C3N4 (a); Tauc curves of Bi2O2CO3 and g-C3N4 (b); Mott-Schottky diagram of g-C3N4 (c) and Bi2O2CO3 (d)
Fig.6 Comparison of reaction activity of g-C3N4, Bi2O2CO3, x-Bi2O2CO3/g-C3N4 (x=0.5, 1.5, 2.5, 3.5) [test conditions: 30 mg catalysts, 300 W xenon lamp (AM 1.5G), illumination time 4 h](a); The conversion of benzyl alcohol on 1.5-Bi2O2CO3/g-C3N4 in 9 h under the same conditions (b); Stability test of 1.5-Bi2O2CO3/g-C3N4 30 mg catalyst [test conditions: 30 mg catalysts, 300 W xenon lamp (AM 1.5G), illumination time 4 h] (c); The conversion of benzyl alcohol after radical capture experiment on 1.5-Bi2O2CO3/g-C3N4 (d)
序号 | 催化剂 | 反应条件 | 选择性/% | 转化率/% | 文献 |
---|---|---|---|---|---|
1 | TiO2@COF | white light LED, 30 h | 99.9 | 92.5 | [ |
2 | Au-Pd/ZnIn2S4 | λ> 420 nm, 10 h | >99 | 90.6 | [ |
3 | NH2-MIL-125(Ti) | white light LED, 40 h | >99 | 88 | [ |
4 | N-vacancy-g-C3N4 | AM 1.5, 9 h | >99 | 68.3 | [ |
5 | CdS@SnO2; | λ> 420 nm, 8 h | 98 | 78 | [ |
6 | Au-BiOCl-OV | λ> 420 nm, 8 h | >99 | 75.6 | [ |
7 | Bi4O5Br2 | blue LED, 24 h | >99 | 99.1 | [ |
8 | Bi2O2CO3/g-C3N4 | AM 1.5, 9 h | >99.9 | >99.9 | 本工作 |
Table 1 Overview of the literature on selective photocatalytic oxidation of benzyl alcohol
序号 | 催化剂 | 反应条件 | 选择性/% | 转化率/% | 文献 |
---|---|---|---|---|---|
1 | TiO2@COF | white light LED, 30 h | 99.9 | 92.5 | [ |
2 | Au-Pd/ZnIn2S4 | λ> 420 nm, 10 h | >99 | 90.6 | [ |
3 | NH2-MIL-125(Ti) | white light LED, 40 h | >99 | 88 | [ |
4 | N-vacancy-g-C3N4 | AM 1.5, 9 h | >99 | 68.3 | [ |
5 | CdS@SnO2; | λ> 420 nm, 8 h | 98 | 78 | [ |
6 | Au-BiOCl-OV | λ> 420 nm, 8 h | >99 | 75.6 | [ |
7 | Bi4O5Br2 | blue LED, 24 h | >99 | 99.1 | [ |
8 | Bi2O2CO3/g-C3N4 | AM 1.5, 9 h | >99.9 | >99.9 | 本工作 |
Fig.7 Steady-state fluorescence spectra (a), time-resolved PL decay spectra (b), transient photocurrent spectra (c), the EIS Nyquist plots (d) of photocatalysts for g-C3N4, Bi2O2CO3 and 1.5-Bi2O2CO3/g-C3N4
1 | Yang Z W, Xu X Q, Liang X X, et al. MIL-53(Fe)-graphene nanocomposites: efficient visible-light photocatalysts for the selective oxidation of alcohols[J]. Applied Catalysis B: Environmental, 2016, 198: 112-123. |
2 | Chen X L, Zhong X, Yuan B W, et al. Defect engineering of nickel hydroxide nanosheets by Ostwald ripening for enhanced selective electrocatalytic alcohol oxidation[J]. Green Chemistry, 2019, 21(3): 578-588. |
3 | She H D, Zhou H, Li L S, et al. Nickel-doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11939-11948. |
4 | Sun L Q, Li B, Chu X Y, et al. Synthesis of Si-O-bridged g-C3N4/WO3 2D-heterojunctional nanocomposites as efficient photocatalysts for aerobic alcohol oxidation and mechanism insight[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 9916-9927. |
5 | 马淳安, 廖艳梅, 朱英红, 等. Ni-Cu合金电极上苯甲醇的选择性电氧化[J]. 化工学报, 2011, 62(1): 142-146. |
Ma C A, Liao Y M, Zhu Y H, et al. Selective electro-oxidation of benzyl alcohol on Ni-Cu alloy electrodes[J]. CIESC Journal, 2011, 62(1): 142-146. | |
6 | McClelland K P, Weiss E A. Selective photocatalytic oxidation of benzyl alcohol to benzaldehyde or C—C coupled products by visible-light-absorbing quantum dots[J]. ACS Applied Energy Materials, 2019, 2(1): 92-96. |
7 | Hao H C, Zhang L, Wang W Z, et al. Photocatalytic hydrogen evolution coupled with efficient selective benzaldehyde production from benzyl alcohol aqueous solution over ZnS-NixSy composites[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10501-10508. |
8 | Zou J H, Wang Z T, Guo W, et al. Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: the effect of surface OH groups[J]. Applied Catalysis B: Environmental, 2020, 260: 118185. |
9 | Jing K Q, Ma W, Ren Y H, et al. Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol[J]. Applied Catalysis B: Environmental, 2019, 243: 10-18. |
10 | Li X R, Wang J G, Men Y, et al. TiO2 mesocrystal with exposed (001) facets and CdS quantum dots as an active visible photocatalyst for selective oxidation reactions[J]. Applied Catalysis B: Environmental, 2016, 187: 115-121. |
11 | Xu C, Yang F, Deng B J, et al. Ti3C2/TiO2 nanowires with excellent photocatalytic performance for selective oxidation of aromatic alcohols to aldehydes[J]. Journal of Catalysis, 2020, 383: 1-12. |
12 | Lu G L, Huang X B, Wu Z Y, et al. Construction of covalently integrated core-shell TiO2 nanobelts@COF hybrids for highly selective oxidation of alcohols under visible light[J]. Applied Surface Science, 2019, 493: 551-560. |
13 | Wang Z, Feng J J, Li X L, et al. Au-Pd nanoparticles immobilized on TiO2 nanosheet as an active and durable catalyst for solvent-free selective oxidation of benzyl alcohol[J]. Journal of Colloid and Interface Science, 2021, 588: 787-794. |
14 | Lv Y, Xu Z L, Kobayashi H, et al. Novel Pd-loaded urchin-like (NH4)xWO3/WO3 as an efficient visible-light-driven photocatalyst for partial conversion of benzyl alcohol[J]. Journal of Alloys and Compounds, 2020, 845: 156225. |
15 | Ren Z Y, Zhang J Y, Xiao F X, et al. Revisiting the construction of graphene–CdS nanocomposites as efficient visible-light-driven photocatalysts for selective organic transformation[J]. J.Mater. Chem. A, 2014, 2(15): 5330-5339. |
16 | Samanta S, Khilari S, Pradhan D, et al. An efficient, visible light driven, selective oxidation of aromatic alcohols and amines with O2 using BiVO4/g-C3N4 nanocomposite: a systematic and comprehensive study toward the development of a photocatalytic process[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2562-2577. |
17 | Dai Y T, Ren P J, Li Y R, et al. Solid base Bi24O31Br10(OH)δ with active lattice oxygen for the efficient photo-oxidation of primary alcohols to aldehydes[J]. Angewandte Chemie, 2019, 131(19): 6331-6336. |
18 | Zhang R Q, Liu Y Y, Wang Z Y, et al. Selective photocatalytic conversion of alcohol to aldehydes by singlet oxygen over Bi-based metal-organic frameworks under UV-Vis light irradiation[J]. Applied Catalysis B: Environmental, 2019, 254: 463-470. |
19 | Li H, Qin F, Yang Z, et al. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies[J]. Journal of the American Chemical Society, 2017, 139(9): 3513-3521. |
20 | Ding J, Xu W, Wan H, et al. Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes[J]. Applied Catalysis B: Environmental, 2018, 221: 626-634. |
21 | 张开莲, 杨凯, 李笑笑, 等. 一步水热合成In2S3/CdIn2S4异质结微球及其光催化性能[J]. 化工学报, 2020, 71(8): 3602-3613. |
Zhang K L, Yang K, Li X X, et al. One-step hydrothermal synthesis of In2S3/CdIn2S4 heterojunction microsphere and its photocatalytic performance[J]. CIESC Journal, 2020, 71(8): 3602-3613. | |
22 | 孙丹阳, 翟婷婷, 黎汉生, 等. g-C3N4的改性策略以及g-C3N4/Ti3C2异质结研究进展[J]. 化工学报, 2020, 71: 1-11. |
Sun D Y, Zhai T T, Li H S, et al. Research progress on modification strategy of g-C3N4 and g-C3N4/Ti3C2 heterojunction[J]. CIESC Journal, 2020, 71: 1-11. | |
23 | Zhang K N, Zhang T N, Cheng G H, et al. Interlayer transition and infrared photodetection in atomically thin type-Ⅱ MoTe₂/MoS₂ van der Waals heterostructures[J]. ACS Nano, 2016, 10(3): 3852-3858. |
24 | Yang G, Chen D M, Ding H, et al. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency[J]. Applied Catalysis B: Environmental, 2017, 219: 611-618. |
25 | Liao G F, Gong Y, Zhang L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy & Environmental Science, 2019, 12(7): 2080-2147. |
26 | Chen D M, Wang K W, Xiang D G, et al. Significantly enhancement of photocatalytic performances via core-shell structure of ZnO@mpg-C3N4[J]. Applied Catalysis B: Environmental, 2014, 147: 554-561. |
27 | Chen D M, Wang K W, Hong W Z, et al. Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite[J]. Applied Catalysis B: Environmental, 2015, 166/167: 366-373. |
28 | Zhang W Y, Bariotaki A, Smonou I, et al. Visible-light-driven photooxidation of alcohols using surface-doped graphitic carbon nitride[J]. Green Chemistry, 2017, 19(9): 2096-2100. |
29 | Xing C S, Wu Z D, Jiang D L, et al. Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science, 2014, 433: 9-15. |
30 | 何志桥, 陈锦萍, 童丽丽, 等. BiOCl/g-C3N4异质结催化剂可见光催化还原CO2[J]. 化工学报, 2016, 67(11): 4634-4642. |
He Z Q, Chen J P, Tong L L, et al. BiOCl/g-C3N4 heterojunction catalyst for efficient photocatalytic reduction of CO2 under visible light[J]. CIESC Journal, 2016, 67(11): 4634-4642. | |
31 | Chen L, Hua H, Yang Q, et al. Visible-light photocatalytic activity of Ag2O coated Bi2WO6 hierarchical microspheres assembled by nanosheets[J]. Applied Surface Science, 2015, 327: 62-67. |
32 | Kim K, Nam S K, Park J H, et al. Growth of BiVO4 nanoparticles on a WO3 porous scaffold: improved water-splitting by high band-edge light harvesting[J]. Journal of Materials Chemistry A, 2019, 7(9): 4480-4485. |
33 | Wang G Z, Luo X K, Huang Y H, et al. BiOX/BiOY (X, Y = F, Cl, Br, I) superlattices for visible light photocatalysis applications[J]. RSC Advances, 2016, 6(94): 91508-91516. |
34 | Zhang G Y, Wang J J, Shen X Q, et al. Br-doped Bi2O2CO3 nanosheets with improved electronic structure and accelerated charge migration for outstanding photocatalytic behavior[J]. Applied Surface Science, 2019, 470: 63-73. |
35 | Zhao H P, Li G F, Tian F, et al. g-C3N4 surface-decorated Bi2O2CO3 for improved photocatalytic performance: theoretical calculation and photodegradation of antibiotics in actual water matrix[J]. Chemical Engineering Journal, 2019, 366: 468-479. |
36 | Lan Y L, Li Z S, Xie W, et al. In situ fabrication of I-doped Bi2O2CO3/g-C3N4 heterojunctions for enhanced photodegradation activity under visible light[J]. Journal of Hazardous Materials, 2020, 385: 121622. |
37 | Ma Y J, Bian Y, Tan P F, et al. Simple and facile ultrasound-assisted fabrication of Bi2O2CO3/g-C3N4 composites with excellent photoactivity[J]. Journal of Colloid and Interface Science, 2017, 497: 144-154. |
38 | 陈克龙, 黄建花. g-C3N4-CdS-NiS2复合纳米管的制备及可见光催化分解水制氢[J]. 化工学报, 2020, 71(1): 397-408. |
Chen K L, Huang J H. G-C3N4-CdS-NiS2 composite nanotube: synthesis and its photocatalytic activity for H2 generation under visible light[J]. CIESC Journal, 2020, 71(1): 397-408. | |
39 | Zhang R Y, Ran T, Cao Y H, et al. Oxygen activation of noble-metal-free g-C3N4/α-Ni(OH)2 to control the toxic byproduct of photocatalytic nitric oxide removal[J]. Chemical Engineering Journal, 2020, 382: 123029. |
40 | Yang B, Lv K, Li Q, et al. Photosensitization of Bi2O2CO3 nanoplates with amorphous Bi2S3 to improve the visible photoreactivity towards NO oxidation[J]. Applied Surface Science, 2019, 495: 143561. |
41 | Hao Q, Xie C A, Huang Y M, et al. Accelerated separation of photogenerated charge carriers and enhanced photocatalytic performance of g-C3N4 by Bi2S3 nanoparticles[J]. Chinese Journal of Catalysis, 2020, 41(2): 249-258. |
42 | Liu S, Zhao M Y, He Z T, et al. Preparation of a p-n heterojunction 2D BiOI nanosheet/1DBiPO4 nanorod composite electrode for enhanced visible light photoelectrocatalysis[J]. Chinese Journal of Catalysis, 2019, 40(3): 446-457. |
43 | Jin J, Yu J G, Guo D P, et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity[J]. Small, 2015, 11(39): 5262-5271. |
44 | Heidari S, Haghighi M, Shabani M. Sono-photodeposition of Ag over sono-fabricated mesoporous Bi2Sn2O7-two dimensional carbon nitride: type-Ⅱ plasmonic nano-heterojunction with simulated sunlight-driven elimination of drug[J]. Chemical Engineering Journal, 2020, 389: 123418. |
45 | Feng C J, Yang X L, Sun Z L, et al. Dual interfacial synergism in Au-Pd/ZnIn2S4 for promoting photocatalytic selective oxidation of aromatic alcohol[J]. Applied Surface Science, 2020, 501: 144018. |
46 | Wu Z Y, Huang X B, Zheng H Y, et al. Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light[J]. Applied Catalysis B: Environmental, 2018, 224: 479-487. |
47 | Liu Y, Zhang P, Tian B Z, et al. Core-shell structural CdS@SnO2 nanorods with excellent visible-light photocatalytic activity for the selective oxidation of benzyl alcohol to benzaldehyde[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 13849-13858. |
48 | Zheng C X, He G P, Xiao X, et al. Selective photocatalytic oxidation of benzyl alcohol into benzaldehyde with high selectivity and conversion ratio over Bi4O5Br2 nanoflakes under blue LED irradiation[J]. Applied Catalysis B: Environmental, 2017, 205: 201-210. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[3] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[4] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[5] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[6] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[7] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[8] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[9] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[10] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[11] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[12] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[15] | Airan ZHOU, Ping LU, Jianhui XIA, Dongqin LI, Jie GUO, Ming DU, Lichun DONG. Scarring analysis and numerical simulation of TiCl4 oxidation reactor in chloride process of titanium dioxide [J]. CIESC Journal, 2023, 74(4): 1499-1508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||