CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 5040-5052.DOI: 10.11949/0438-1157.20210462
• Thermodynamics • Previous Articles Next Articles
Zhongjie SHEN(),Xiaolei GUO,Qinfeng LIANG,Haifeng LIU(
)
Received:
2021-04-06
Revised:
2021-07-03
Online:
2021-10-05
Published:
2021-10-05
Contact:
Haifeng LIU
通讯作者:
刘海峰
作者简介:
沈中杰(1989—),男,博士,特聘副研究员,基金资助:
CLC Number:
Zhongjie SHEN,Xiaolei GUO,Qinfeng LIANG,Haifeng LIU. Development of coal ash/slag viscosity-temperature model based on crystal growth and morphologies[J]. CIESC Journal, 2021, 72(10): 5040-5052.
沈中杰,郭晓镭,梁钦锋,刘海峰. 基于晶体生长及形貌的煤灰渣黏温模型[J]. 化工学报, 2021, 72(10): 5040-5052.
模型 | 颗粒形貌 | 体积分数? | 特征 |
---|---|---|---|
Einstein[ | 球形颗粒 | ? ≤0.1 | 适用于低浓度悬浮液 |
Einstein & Roscoe[ | 悬浮球体 | 0≤? ≤0.5 | 适用于粒径范围宽的悬浮液 |
Batchelor[ | 刚性球体 | 0≤? ≤0.5 | 适用于低固相浓度悬浮液 |
Maron & Pierce[ | 球形颗粒 | 0≤? ≤0.6 | 适用于分散相悬浮液 |
Krieger & Dougherty[ | 刚性球体 | 0≤? ≤0.6 | 考虑聚合作用,单一颗粒 |
Chong et al.[ | 球形颗粒 | 0≤? ≤0.5 | 具备表征球形颗粒尺寸分布常数 |
Moitra & Gonnermann[ | 球形、圆柱形 | 0≤? ≤0.6 | 考虑多种形状颗粒和不同颗粒体积比 |
Zhou et al.[ | 球形、立方、针状 | 0≤? ≤0.5 | 考虑多种形状 |
Table 1 Applicable condition and scope of traditional suspension model
模型 | 颗粒形貌 | 体积分数? | 特征 |
---|---|---|---|
Einstein[ | 球形颗粒 | ? ≤0.1 | 适用于低浓度悬浮液 |
Einstein & Roscoe[ | 悬浮球体 | 0≤? ≤0.5 | 适用于粒径范围宽的悬浮液 |
Batchelor[ | 刚性球体 | 0≤? ≤0.5 | 适用于低固相浓度悬浮液 |
Maron & Pierce[ | 球形颗粒 | 0≤? ≤0.6 | 适用于分散相悬浮液 |
Krieger & Dougherty[ | 刚性球体 | 0≤? ≤0.6 | 考虑聚合作用,单一颗粒 |
Chong et al.[ | 球形颗粒 | 0≤? ≤0.5 | 具备表征球形颗粒尺寸分布常数 |
Moitra & Gonnermann[ | 球形、圆柱形 | 0≤? ≤0.6 | 考虑多种形状颗粒和不同颗粒体积比 |
Zhou et al.[ | 球形、立方、针状 | 0≤? ≤0.5 | 考虑多种形状 |
组成 | 煤灰/%(质量) | ||||||
---|---|---|---|---|---|---|---|
雨田 | 转龙湾 | 红沙泉 | 沙尔湖 | 神府 | 神火 | 将军庙 | |
SiO2 | 47.03 | 40.73 | 40.07 | 35.44 | 39.74 | 24.25 | 26.67 |
Al2O3 | 23.66 | 19.94 | 16.86 | 18.46 | 12.98 | 11.01 | 8.76 |
CaO | 12.22 | 11.82 | 8.96 | 25.43 | 28.44 | 27.95 | 16.04 |
Fe2O3 | 9.26 | 8.42 | 14.03 | 6.22 | 13.21 | 6.07 | 15.70 |
MgO | 0.74 | 2.32 | 5.59 | 4.87 | 0.93 | 9.03 | 9.60 |
SO3 | 4.24 | 12.18 | 7.53 | 3.08 | 0.72 | 17.76 | 14.51 |
Na2O | 1.20 | 3.26 | 5.40 | 4.92 | 2.12 | 2.53 | 7.70 |
K2O | 1.01 | 0.54 | 0.62 | 0.75 | 1.12 | 0.77 | 0.52 |
TiO2 | 0.63 | 0.79 | 0.95 | 0.83 | 0.74 | 0.63 | 0.49 |
SiO2+Al2O3 | 70.69 | 60.66 | 56.92 | 53.90 | 52.72 | 35.26 | 35.43 |
A/B① | 2.92 | 2.33 | 1.67 | 1.30 | 1.17 | 0.77 | 0.72 |
Table 2 Chemical compositions of coal ashes used in this study
组成 | 煤灰/%(质量) | ||||||
---|---|---|---|---|---|---|---|
雨田 | 转龙湾 | 红沙泉 | 沙尔湖 | 神府 | 神火 | 将军庙 | |
SiO2 | 47.03 | 40.73 | 40.07 | 35.44 | 39.74 | 24.25 | 26.67 |
Al2O3 | 23.66 | 19.94 | 16.86 | 18.46 | 12.98 | 11.01 | 8.76 |
CaO | 12.22 | 11.82 | 8.96 | 25.43 | 28.44 | 27.95 | 16.04 |
Fe2O3 | 9.26 | 8.42 | 14.03 | 6.22 | 13.21 | 6.07 | 15.70 |
MgO | 0.74 | 2.32 | 5.59 | 4.87 | 0.93 | 9.03 | 9.60 |
SO3 | 4.24 | 12.18 | 7.53 | 3.08 | 0.72 | 17.76 | 14.51 |
Na2O | 1.20 | 3.26 | 5.40 | 4.92 | 2.12 | 2.53 | 7.70 |
K2O | 1.01 | 0.54 | 0.62 | 0.75 | 1.12 | 0.77 | 0.52 |
TiO2 | 0.63 | 0.79 | 0.95 | 0.83 | 0.74 | 0.63 | 0.49 |
SiO2+Al2O3 | 70.69 | 60.66 | 56.92 | 53.90 | 52.72 | 35.26 | 35.43 |
A/B① | 2.92 | 2.33 | 1.67 | 1.30 | 1.17 | 0.77 | 0.72 |
煤灰 | DT/℃ | ST/℃ | HT/℃ | FT/℃ |
---|---|---|---|---|
雨田 | 881 | 1023 | 1041 | 1063 |
转龙湾 | 1083 | 1120 | 1129 | 1163 |
红沙泉 | 1096 | 1107 | 1109 | 1114 |
沙尔湖 | 1193 | 1242 | 1247 | 1255 |
神府 | 1168 | 1173 | 1176 | 1184 |
神火 | 1204 | 1229 | 1231 | 1236 |
将军庙 | 1156 | 1171 | 1185 | 1195 |
Table 3 Ash fusion temperatures (AFTs) of coal ashes used in this study
煤灰 | DT/℃ | ST/℃ | HT/℃ | FT/℃ |
---|---|---|---|---|
雨田 | 881 | 1023 | 1041 | 1063 |
转龙湾 | 1083 | 1120 | 1129 | 1163 |
红沙泉 | 1096 | 1107 | 1109 | 1114 |
沙尔湖 | 1193 | 1242 | 1247 | 1255 |
神府 | 1168 | 1173 | 1176 | 1184 |
神火 | 1204 | 1229 | 1231 | 1236 |
将军庙 | 1156 | 1171 | 1185 | 1195 |
1 | 王辅臣. 煤气化技术在中国:回顾与展望[J]. 洁净煤技术, 2021, 27(1): 1-33. |
Wang F C. Coal gasification technologies in China: review and prospect[J]. Clean Coal Technology, 2021, 27(1): 1-33. | |
2 | Wang P, Massoudi M. Slag behavior in gasifiers (Part Ⅰ): Influence of coal properties and gasification conditions[J]. Energies, 2013, 6(2): 784-806. |
3 | 周志杰, 李德侠, 刘霞, 等. 煤灰熔融黏温特性及对气流床气化的适应性[J]. 化工学报, 2012, 63(10): 3243-3254. |
Zhou Z J, Li D X, Liu X, et al. Characteristic of cohesiveness-temperature of coal molten ash and its adaptability to entrained flow gasifier[J]. CIESC Journal, 2012, 63(10): 3243-3254. | |
4 | 白进, 孔令学, 李怀柱, 等. 山西典型无烟煤灰流动性的调控[J]. 燃料化学学报, 2013, 41(7): 805-813. |
Bai J, Kong L X, Li H Z, et al. Adjustment in high temperature flow property of ash from Shanxi typical anthracite[J]. Journal of Fuel Chemistry and Technology, 2013, 41(7): 805-813. | |
5 | Wu G X, Yazhenskikh E, Hack K, et al. Viscosity model for oxide melts relevant to fuel slags(Part 2): The system SiO2-Al2O3-CaO-MgO-Na2O-K2O[J]. Fuel Processing Technology, 2015, 138: 520-533. |
6 | Song W J, Tang L H, Zhu X D, et al. Flow properties and rheology of slag from coal gasification[J]. Fuel, 2010, 89(7): 1709-1715. |
7 | Schwitalla D H, Bronsch A M, Klinger M, et al. Analysis of solid phase formation and its impact on slag rheology[J]. Fuel, 2017, 203: 932-941. |
8 | Xuan W W, Whitty K J, Guan Q L, et al. Influence of Fe2O3 and atmosphere on crystallization characteristics of synthetic coal slags[J]. Energy & Fuels, 2015, 29(1): 405-412. |
9 | Xuan W W, Wang Q, Zhang J S, et al. Influence of silica and alumina (SiO2 + Al2O3) on crystallization characteristics of synthetic coal slags[J]. Fuel, 2017, 189: 39-45. |
10 | Ilyushechkin A Y, Hla S S, Roberts D G, et al. The effect of solids and phase compositions on viscosity behaviour and TCV of slags from Australian bituminous coals[J]. Journal of Non-Crystalline Solids, 2011, 357(3): 893-902. |
11 | Kim H, Matsuura H, Tsukihashi F, et al. Effect of Al2O3 and CaO/SiO2 on the viscosity of calcium-silicate-based slags containing 10 mass pct MgO[J]. Metallurgical and Materials Transactions B, 2013, 44(1): 5-12. |
12 | Li X M, Zhi L F, He C, et al. The factors on metallic iron crystallization from slag of direct coal liquefaction residue SiO2-Al2O3-Fe2O3-CaO-MgO-TiO2-Na2O-K2O system in the entrained flow gasification condition[J]. Fuel, 2019, 246: 417-424. |
13 | Liu X, Yu G S, Xu J L, et al. Viscosity fluctuation behaviors of coal ash slags with high content of calcium and low content of silicon[J]. Fuel Processing Technology, 2017, 158: 115-122. |
14 | Ma Y S, Wu G X, Guo Q H, et al. Investigation of fluctuation behavior in viscosity of coal slags used in entrained-flow gasifiers[J]. Fuel Processing Technology, 2018, 181: 133-141. |
15 | Browning G J, Bryant G W, Hurst H J, et al. An empirical method for the prediction of coal ash slag viscosity[J]. Energy & Fuels, 2003, 17(3): 731-737. |
16 | Urbain G, Cambier F, Deletter M, et al. Viscosity of silicate melts[J]. Transactions and Journal of the British Ceramic Society, 1981, 80(4): 139-141. |
17 | Song W J, Dong Y H, Wu Y Q, et al. Prediction of temperature of critical viscosity for coal ash slag[J]. AIChE Journal, 2011, 57(10): 2921-2925. |
18 | Hurst H J, Novak F, Patterson J H. Viscosity measurements and empirical predictions for some model gasifier slags[J]. Fuel, 1999, 78(4): 439-444. |
19 | Hurst H J, Patterson J H, Quintanar A. Viscosity measurements and empirical predictions for some model gasifier slags(Ⅱ)[J]. Fuel, 2000, 79(14): 1797-1799. |
20 | Duchesne M A, Macchi A, Lu D Y, et al. Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions[J]. Fuel Processing Technology, 2010, 91(8): 831-836. |
21 | Duchesne M A, Bronsch A M, Hughes R W, et al. Slag viscosity modeling toolbox[J]. Fuel, 2013, 114: 38-43. |
22 | Kong L X, Bai J, Li W, et al. The internal and external factor on coal ash slag viscosity at high temperatures(Part 2): Effect of residual carbon on slag viscosity[J]. Fuel, 2015, 158: 976-982. |
23 | Sun Y Q, Shen H W, Wang H, et al. Experimental investigation and modeling of cooling processes of high temperature slags[J]. Energy, 2014, 76: 761-767. |
24 | Duan W J, Gao Y K, Yu Q B, et al. Numerical simulation of coal gasification in molten slag: gas-liquid interaction characteristic[J]. Energy, 2019, 183: 1233-1243. |
25 | Yuan H P, Liang Q F, Gong X. Crystallization of coal ash slags at high temperatures and effects on the viscosity[J]. Energy & Fuels, 2012, 26(6): 3717-3722. |
26 | Einstein A. A new determination of molecular dimensions[J]. Ann. Phys., 1906, 19: 289-306. |
27 | Einstein A. Berichtigung zu meiner Arbeit:“Eine neue Bestimmung der Moleküldimensionen”[J]. Annalen Der Physik, 1911, 339(3): 591-592. |
28 | Roscoe R. The viscosity of suspensions of rigid spheres[J]. British Journal of Applied Physics, 1952, 3(8): 267-269. |
29 | Batchelor G K. Sedimentation in a dilute polydisperse system of interacting spheres (Part 1): General theory[J]. Journal of Fluid Mechanics, 1982, 119: 379-408. |
30 | Maron S H, Pierce P E. Application of ree-eyring generalized flow theory to suspensions of spherical particles[J]. Journal of Colloid Science, 1956, 11(1): 80-95. |
31 | Krieger I M, Dougherty T J. A mechanism for non-Newtonian flow in suspensions of rigid spheres[J]. Transactions of the Society of Rheology, 1959, 3(1): 137-152. |
32 | Chong J S, Christiansen E B, Baer A D. Rheology of concentrated suspensions[J]. Journal of Applied Polymer Science, 1971, 15(8): 2007-2021. |
33 | Moitra P, Gonnermann H M. Effects of crystal shape- and size-modality on magma rheology[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(1): 1-26. |
34 | Zhou J, Shen Z J, Liang Q F, et al. A new prediction method for the viscosity of the molten coal slag (Part 1): The effect of particle morphology on the suspension viscosity[J]. Fuel, 2018, 220: 296-302. |
35 | Zhou J, Shen Z J, Liang Q F, et al. A new prediction method for the viscosity of the molten coal slag (Part 2): The viscosity model of crystalline slag[J]. Fuel, 2018, 220: 233-239. |
36 | Bale C W, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases, 2010—2016[J]. Calphad, 2016, 54: 35-53. |
37 | Mindat.org. Database[DB/OL]. . |
38 | Arman, Okada A, Takebe H. Density measurements of gasified coal and synthesized slag melts for next-generation IGCC[J]. Fuel, 2016, 182: 304-313. |
39 | Xuan W W, Whitty K J, Guan Q L, et al. Influence of CaO on crystallization characteristics of synthetic coal slags[J]. Energy & Fuels, 2014, 28(10): 6627-6634. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 612
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 409
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||