CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 5273-5283.DOI: 10.11949/0438-1157.20210574
• Process system engineering • Previous Articles Next Articles
Chao REN(),Lin SUN,Xionglin LUO()
Received:
2021-04-22
Revised:
2021-05-21
Online:
2021-10-05
Published:
2021-10-05
Contact:
Xionglin LUO
通讯作者:
罗雄麟
作者简介:
任超(1998—),男,硕士研究生,基金资助:
CLC Number:
Chao REN,Lin SUN,Xionglin LUO. Analysis on the reconfiguration of the control system of the heat exchanger in response to the slow and time-varying fouling[J]. CIESC Journal, 2021, 72(10): 5273-5283.
任超,孙琳,罗雄麟. 换热器因应结垢慢时变的控制系统重构分析[J]. 化工学报, 2021, 72(10): 5273-5283.
Add to citation manager EndNote|Ris|BibTeX
项目 | 壳程(热流) | 管程(冷流) |
---|---|---|
物流名称 | 水 | 水 |
流量/(kg·s | 90 | 90 |
进口温度/K | 366.49 | 283.15 |
出口温度/K | 338.2 | 310.5 |
进口压力/kPa | 551.59 | 551.59 |
密度/(kg·m | 965.3 | 999.7 |
比热容/(J·kg | 4177 | 4187 |
黏度/(mPa·s) | 0.355 | 0.9 |
Table 1 Flow data of heat exchanger
项目 | 壳程(热流) | 管程(冷流) |
---|---|---|
物流名称 | 水 | 水 |
流量/(kg·s | 90 | 90 |
进口温度/K | 366.49 | 283.15 |
出口温度/K | 338.2 | 310.5 |
进口压力/kPa | 551.59 | 551.59 |
密度/(kg·m | 965.3 | 999.7 |
比热容/(J·kg | 4177 | 4187 |
黏度/(mPa·s) | 0.355 | 0.9 |
项目 | 计算值 |
---|---|
壳程传热系数/(W·(m2·K) | 7363.6 |
管程传热系数/(W·(m2·K) | 5089.8 |
不考虑结垢热阻时的换热器传热系数/(W·(m2·K) | 2288.6 |
不考虑结垢热阻和旁路设计时所需的换热面积/ m2 | 80.48 |
旁路设计中不考虑结垢热阻时所需的换热面积/ m2 | 96.15 |
旁路设计中考虑结垢热阻时所需的换热面积/ m2 | 144.4 |
本文选取的换热面积/ m2 | 125 |
旁路设计中结垢裕量计算值/% | 50.16 |
本文中结垢裕量取值/% | 30 |
Table 2 Results of overdesign area of heat exchanger
项目 | 计算值 |
---|---|
壳程传热系数/(W·(m2·K) | 7363.6 |
管程传热系数/(W·(m2·K) | 5089.8 |
不考虑结垢热阻时的换热器传热系数/(W·(m2·K) | 2288.6 |
不考虑结垢热阻和旁路设计时所需的换热面积/ m2 | 80.48 |
旁路设计中不考虑结垢热阻时所需的换热面积/ m2 | 96.15 |
旁路设计中考虑结垢热阻时所需的换热面积/ m2 | 144.4 |
本文选取的换热面积/ m2 | 125 |
旁路设计中结垢裕量计算值/% | 50.16 |
本文中结垢裕量取值/% | 30 |
方案 | 旁路开度剩余量/% |
---|---|
控制方案 1 | 10.8 |
控制方案 2 | 0.0 |
控制方案 3 | 17.0 |
Table 3 The residual value of the bypass opening in the three control schemes
方案 | 旁路开度剩余量/% |
---|---|
控制方案 1 | 10.8 |
控制方案 2 | 0.0 |
控制方案 3 | 17.0 |
14 | 罗雄麟, 孙琳, 张俊峰. 换热网络旁路优化设计[J]. 化工学报, 2008, 59(3): 646-652. |
Luo X L, Sun L, Zhang J F. Optimal design of bypass location on heat exchanger networks[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(3): 646-652. | |
15 | Xu F, Luo X L, Wang R. Design margin and control performance analysis of a fluid catalytic cracking unit regenerator under model predictive control[J]. Industrial & Engineering Chemistry Research, 2014, 53(37): 14339-14350. |
16 | 朱真, 孙琳, 罗雄麟. 基于持续节能的多周期换热网络优化设计[J]. 化工学报, 2016, 67(12): 5176-5182. |
Zhu Z, Sun L, Luo X L. Design optimization of multi-period heat exchanger networks based on continuous energy saving[J]. CIESC Journal, 2016, 67(12): 5176-5182. | |
17 | Sun L, Zha X L, Luo X L. Coordination between bypass control and economic optimization for heat exchanger network[J]. Energy, 2018, 160: 318-329. |
18 | Mhaskar P, Gani A, Christofides P D. Fault-tolerant control of nonlinear processes: performance-based reconfiguration and robustness[J]. International Journal of Robust and Nonlinear Control, 2006, 16(3): 91-111. |
19 | Lakshminarayanan S, Emoto G, Ebara S, et al. Closed loop identification and control loop reconfiguration: an industrial case study[J]. Journal of Process Control, 2001, 11(5): 587-599. |
20 | Gopinathan M, Mehra R K, Runkle J C. Hot isostatic pressing furnaces[J]. IEEE Control Systems Magazine, 2000, 20(6): 67-82. |
21 | Luo X L, Xia C K, Sun L. Margin design, online optimization, and control approach of a heat exchanger network with bypasses[J]. Computers & Chemical Engineering, 2013, 53: 102-121. |
22 | 孙琳, 杨明达, 罗雄麟. 基于持续节能的换热网络缓释优化[J]. 化工进展, 2020, 39(10): 3941-3948. |
Sun L, Yang M D, Luo X L. Slow-release optimization of heat exchange networks based on sustainable energy saving[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3941-3948. | |
23 | Hasson D, Avriel M, Resnick W, et al. Mechanism of calcium carbonate scale deposition on heat-transfer surfaces[J]. Industrial& Engineering Chemistry Fundamentals, 1968, 7(1): 59-65. |
24 | Abuhalima O, Sun L, Chang R X, et al. Synthesis of a multipass heat exchanger network based on life cycle energy saving[J]. Applied Thermal Engineering, 2016, 100: 1189-1197. |
1 | Chen Q, Wang M R, Pan N, et al. Optimization principles for convective heat transfer[J]. Energy, 2009, 34(9): 1199-1206. |
2 | 蒋立本, 冯霄, 丁生华, 等. 受网络夹点控制的装置的改造分析[J]. 高校化学工程学报, 2001, 15(2): 161-166. |
25 | Zubair S M, Sheikh A K, Shaik M N. A probabilistic approach to the maintenance of heat-transfer equipment subject to fouling[J]. Energy, 1992, 17(8): 769-776. |
26 | 石油化学工业部石油化工规划设计院. 冷换设备工艺计算[M]. 北京: 石油工业出版社, 1979: 21-25. |
Petrochemical Planning & Design Institute. Heat Exchanger Technical Calculation[M]. Beijing: Petroleum Industry Press, 1979: 21-25. | |
27 | Lugo-Granados H, Picon N M. Modelling scaling growth in heat transfer surfaces and its application on the design of heat exchangers[J]. Energy, 2018, 160: 845-854. |
2 | Jiang L B, Feng X, Ding S H, et al. Analysis of retrofitting the process controlled by network pinch[J]. Journal of Chemical Engineering of Chinese Universities, 2001, 15(2): 161-166. |
3 | Zheng K, Lou H H, Wang J, et al. A method for flexible heat exchanger network design under severe operation uncertainty[J]. Chemical Engineering & Technology, 2013, 36(5): 757-765. |
28 | 高明, 孙奉仲, 黄新元, 等. 换热器结垢工况下换热系数变化的分析研究[J]. 能源工程, 2003(4): 9-13. |
Gao M, Shun F Z, Huang X Y, et al. Variation of heat transfer coefficient and its mathematic model for heat exchangers in conditions of fouling[J]. Energy Engineering, 2003(4): 9-13. | |
4 | 王传芳, 罗雄麟. 控制裕量及其在管壳式换热器设计中的应用[J]. 炼油技术与工程, 2004, 34(2): 21-25. |
Wang C F, Luo X L. Overdesign for control and its application in tube-shell heat exchanger design[J]. Petroleum Refinery Engineering, 2004, 34(2): 21-25. | |
29 | 刘公召, 臧淑艳, 陈尔霆. 渣油换热器结垢热阻的预测模型研究[J]. 化学工程, 2002, 30(5): 25-28, 2. |
Liu G Z, Zang S Y, Chen E T. Study on prediction model of fouling resistance in residuum heat exchangers[J]. Chemical Engineering (China), 2002, 30(5): 25-28, 2. | |
5 | Wang L K, Sundén B. Detailed simulation of heat exchanger networks for flexibility consideration[J]. Applied Thermal Engineering, 2001, 21(12): 1175-1184. |
6 | 俞巧心, 崔国民, 张佳仁. 基于一阶滞后传递函数的换热器模型预测控制[J]. 化学工程, 2012, 40(5): 66-69. |
30 | Uztürk D, Akman U. Centralized and decentralized control of retrofit heat-exchanger networks[J]. Computers & Chemical Engineering, 1997, 21: S373-S378. |
6 | Yu Q X, Cui G M, Zhang J R. Model predictive control of heat exchanger based on first order lag transfer function[J]. Chemical Engineering (China), 2012, 40(5): 66-69. |
7 | Bakošová M, Oravec J. Robust model predictive control for heat exchanger network[J]. Applied Thermal Engineering, 2014, 73(1): 924-930. |
8 | Mathisen K W, Skogestad S, Wolff E A. Bypass selection for control of heat exchanger networks[J]. Computers & Chemical Engineering, 1992, 16: S263-S272. |
9 | Glemmestad B, Mathisen K W, Gundersen T. Optimal operation of heat exchanger networks based on structural information[J]. Computers& Chemical Engineering, 1996, 20: S823-S828. |
10 | 侯本权, 孙琳, 罗雄麟. 基于结构可控性分析的换热网络旁路优化设计[J]. 化工学报, 2011, 62(5): 1326-1338. |
Hou B Q, Sun L, Luo X L. Optimal design of bypass location on heat exchanger networks based on structural controllability[J]. CIESC Journal, 2011, 62(5): 1326-1338. | |
11 | Luyben W L. Heat-exchanger bypass control[J]. Industrial & Engineering Chemistry Research, 2011, 50(2): 965-973. |
12 | Delatore F, Novazzi L F, Leonardi F, et al. Multivariable optimal control of a heat exchanger network with bypasses[J]. Brazilian Journal of Chemical Engineering, 2016, 33(1): 133-143. |
13 | 孙琳, 迟进浩, 罗雄麟. 换热器设计裕量与旁路设计分析[J]. 计算机与应用化学, 2008, 25(11): 1369-1373. |
Sun L, Chi J H, Luo X L. The analysis of the overdesign and the bypass design for the heat exchanger[J]. Computers and Applied Chemistry, 2008, 25(11): 1369-1373. |
[1] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Qihong ZOU, Qian LI, Tianshu GE. Experimental study of two-stage parallel desiccant coated heat pump system based on multi-objectives [J]. CIESC Journal, 2023, 74(S1): 265-271. |
[4] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[5] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[6] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[7] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[8] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[9] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[10] | Qian MING, Yi GAO, Jian HU, Shengjie LI, Jinjiang WANG. Virtual sensing method for leakage fault of heat exchanger [J]. CIESC Journal, 2023, 74(4): 1836-1846. |
[11] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[12] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[13] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[14] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[15] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||