CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5468-5480.DOI: 10.11949/0438-1157.20210580
• Reviews and monographs • Previous Articles Next Articles
Tengqing LIU(),Wentao YAN,Xin YANG,Shuangfeng WANG()
Received:
2021-04-25
Revised:
2021-08-12
Online:
2021-11-12
Published:
2021-11-05
Contact:
Shuangfeng WANG
通讯作者:
汪双凤
作者简介:
刘腾庆(1990—),男,博士研究生,基金资助:
CLC Number:
Tengqing LIU, Wentao YAN, Xin YANG, Shuangfeng WANG. Research progress on enhanced thermal performance of flat plate heat pipe[J]. CIESC Journal, 2021, 72(11): 5468-5480.
刘腾庆, 闫文韬, 杨鑫, 汪双凤. 强化平板热管传热性能的研究进展[J]. 化工学报, 2021, 72(11): 5468-5480.
Add to citation manager EndNote|Ris|BibTeX
1 | 胡艳鑫, 黄凯鑫, 陈思旭, 等. 自湿润流体的流动与传热特性研究进展[J]. 化工进展, 2017, 36(12): 4329-4342. |
Hu Y X, Huang K X, Chen S X, et al. Research progress of flow and heat transfer characteristics with self-rewetting fluid[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4329-4342. | |
2 | Chen Z S, Li Y, Zhou W J, et al. Design, fabrication and thermal performance of a novel ultra-thin vapour chamber for cooling electronic devices[J]. Energy Conversion and Management, 2019, 187: 221-231. |
3 | Chen Y Y, Li B, Wang X, et al. Investigation of heat transfer and thermal stresses of novel thermal management system integrated with vapour chamber for IGBT power module[J]. Thermal Science and Engineering Progress, 2019, 10: 73-81. |
4 | Chen L, Deng D X, Huang Q S, et al. Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED[J]. Applied Thermal Engineering, 2020, 166: 114686. |
5 | Tang H, Tang Y, Wan Z P, et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy, 2018, 223: 383-400. |
6 | Huang G W, Liu W Y, Luo Y Q, et al. A novel ultra-thin vapor chamber for heat dissipation in ultra-thin portable electronic devices[J]. Applied Thermal Engineering, 2020, 167: 114726. |
7 | 陈金建, 汪双凤. 平板热管散热技术研究进展[J]. 化工进展, 2009, 28(12): 2105-2108. |
Chen J J, Wang S F. Research progress in flat plate heat pipes[J]. Chemical Industry and Engineering Progress, 2009, 28(12): 2105-2108. | |
8 | Jo H, Ahn H S, Kang S, et al. A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces[J]. International Journal of Heat and Mass Transfer, 2011, 54(25/26): 5643-5652. |
9 | Wen R F, Li Q, Wang W, et al. Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays[J]. Nano Energy, 2017, 38: 59-65. |
10 | Wong S C, Lin Y C. Effect of copper surface wettability on the evaporation performance: tests in a flat-plate heat pipe with visualization[J]. International Journal of Heat and Mass Transfer, 2011, 54(17/18): 3921-3926. |
11 | Wen R F, Xu S S, Lee Y C, et al. Capillary-driven liquid film boiling heat transfer on hybrid mesh wicking structures[J]. Nano Energy, 2018, 51: 373-382. |
12 | Sun Z, Qiu H H. An asymmetrical vapor chamber with multiscale micro/nanostructured surfaces[J]. International Communications in Heat and Mass Transfer, 2014, 58: 40-44. |
13 | Shaeri M R, Attinger D, Bonner R. Feasibility study of a vapor chamber with a hydrophobic evaporator substrate in high heat flux applications[J]. International Communications in Heat and Mass Transfer, 2017, 86: 199-205. |
14 | Shaeri M R, Attinger D, Bonner R W III. Vapor chambers with hydrophobic and biphilic evaporators in moderate to high heat flux applications[J]. Applied Thermal Engineering, 2018, 130: 83-92. |
15 | Yang Y C, Li J, Wang H Z, et al. Microstructured wettability pattern for enhancing thermal performance in an ultrathin vapor chamber[J]. Case Studies in Thermal Engineering, 2021, 25: 100906. |
16 | Zhao Y J, Boreyko J B, Chiang M H, et al. Beetle inspired electrospray vapor chamber[C]// Proceedings of the ASME 2009 2nd Micro/Nanoscale Heat & Mass Transfer International Conference. Shanghai, China: ASME, 2009: 439-441. |
17 | Boreyko J B, Zhao Y J, Chen C H. Planar jumping-drop thermal diodes[J]. Applied Physics Letters, 2011, 99(23): 234105. |
18 | Boreyko J B, Chen C H. Vapor chambers with jumping-drop liquid return from superhydrophobic condensers[J]. International Journal of Heat and Mass Transfer, 2013, 61: 409-418. |
19 | Liu F J, Boreyko J B, Qu X P, et al. Self-propelled jumping condensate: fundamental mechanisms and vapor-chamber applications[C] //9th International Conference on Boiling and Condensation Heat Transfer. Boulder, Colorado, USA, 2015: 1-8. |
20 | Boreyko J B, Chen C H. Self-propelled dropwise condensate on superhydrophobic surfaces[J]. Physical Review Letters, 2009, 103(18): 184501. |
21 | Dietz C, Rykaczewski K, Fedorov A G, et al. Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation[J]. Applied Physics Letters, 2010, 97(3): 033104. |
22 | Rykaczewski K, Scott J H J, Rajauria S, et al. Three dimensional aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces[J]. Soft Matter, 2011, 7(19): 8749-8752. |
23 | Enright R, Miljkovic N, Al-Obeidi A, et al. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale[J]. Langmuir, 2012, 28(40): 14424-14432. |
24 | Wiedenheft K F, Guo H A, Qu X P, et al. Hotspot cooling with jumping-drop vapor chambers[J]. Applied Physics Letters, 2017, 110(14): 141601. |
25 | Sun Z, Chen X D, Qiu H H. Experimental investigation of a novel asymmetric heat spreader with nanostructure surfaces[J]. Experimental Thermal and Fluid Science, 2014, 52: 197-204. |
26 | Traipattanakul B, Tso C Y, Chao C Y H. A phase-change thermal diode using electrostatic-induced coalescing-jumping droplets[J]. International Journal of Heat and Mass Transfer, 2019, 135: 294-304. |
27 | Koukoravas T P, Damoulakis G, Megaridis C M. Experimental investigation of a vapor chamber featuring wettability-patterned surfaces[J]. Applied Thermal Engineering, 2020, 178: 115522. |
28 | Damoulakis G, Gukeh M J, Koukoravas T P, et al. Vapor chamber with wickless condenser - thermal diode[C]//2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). Orlando, USA: IEEE, 2020: 104-112. |
29 | Damoulakis G, Megaridis C M. Fully wickless vapor chamber-thermal diode[C]// 73rd Annual Meeting of the APS Division of Fluid Dynamics. Chicago, Illinois, USA: Bulletin of the American Physical Society, 2020:1. |
30 | Tang Y, Yuan D, Lu L S, et al. A multi-artery vapor chamber and its performance[J]. Applied Thermal Engineering, 2013, 60(1/2): 15-23. |
31 | Tsai M C, Kang S W, de Paiva K V. Experimental studies of thermal resistance in a vapor chamber heat spreader[J]. Applied Thermal Engineering, 2013, 56(1/2): 38-44. |
32 | Li Y, Li Z X, Zhou W J, et al. Experimental investigation of vapor chambers with different wick structures at various parameters[J]. Experimental Thermal and Fluid Science, 2016, 77: 132-143. |
33 | Liu W Y, Gou J R, Luo Y Q, et al. The experimental investigation of a vapor chamber with compound columns under the influence of gravity[J]. Applied Thermal Engineering, 2018, 140: 131-138. |
34 | Li Y, Zhou W J, Li Z X, et al. Experimental analysis of thin vapor chamber with composite wick structure under different cooling conditions[J]. Applied Thermal Engineering, 2019, 156: 471-484. |
35 | Wiriyasart S, Naphon P. Fill ratio effects on vapor chamber thermal resistance with different configuration structures[J]. International Journal of Heat and Mass Transfer, 2018, 127: 164-171. |
36 | Chen G, Tang Y, Wan Z P, et al. Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics[J]. International Communications in Heat and Mass Transfer, 2019, 100: 12-19. |
37 | Oshman C, Li Q, Liew L A, et al. Flat flexible polymer heat pipes[J]. Journal of Micromechanics and Microengineering, 2013, 23(1): 015001. |
38 | Liew L A, Lin C Y, Lewis R, et al. Flexible thermal ground planes fabricated with printed circuit board technology[J]. Journal of Electronic Packaging, 2017, 139(1): 011003. |
39 | Huang G W, Liu W Y, Luo Y Q, et al. Fabrication and thermal performance of mesh-type ultra-thin vapor chambers[J]. Applied Thermal Engineering, 2019, 162: 114263. |
40 | Lee D, Byon C. Fabrication and characterization of pure-metal-based submillimeter-thick flexible flat heat pipe with innovative wick structures[J]. International Journal of Heat and Mass Transfer, 2018, 122: 306-314. |
41 | Liu C, Li Q, Fan D S. Fabrication and performance evaluation of flexible flat heat pipes for the thermal control of deployable structure[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118661. |
42 | Aoki H, Ikeda M, Kimura Y. Ultra thin heat pipe and its application[J]. Frontiers in Heat Pipes (FHP), 2012, 2(4): 043003. |
43 | Singh R, Mochizuki M, Shahed M A, et al. Low profile cooling solutions for advanced packaging based on ultra-thin heat pipe and piezo fan[C]//2013 3rd IEEE CPMT Symposium Japan. Kyoto, Japan: IEEE, 2013: 1-4. |
44 | Ahamed M S, Saito Y, Mochizuki M, et al. Hot spot elimination by thin and smart heat spreader[C]// Proceedings of the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. San Francisco, California, USA: ASME, 2015: 56888: 1-10. |
45 | Ahamed M S, Saito Y, Mashiko K, et al. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices[J]. Heat and Mass Transfer, 2017, 53(11): 3241-3247. |
46 | Zhou W J, Li Y, Chen Z S, et al. Ultra-thin flattened heat pipe with a novel band-shape spiral woven mesh wick for cooling smartphones[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118792. |
47 | Li Y, He J B, He H F, et al. Investigation of ultra-thin flattened heat pipes with sintered wick structure[J]. Applied Thermal Engineering, 2015, 86: 106-118. |
48 | Li Y, Zhou W J, He J B, et al. Thermal performance of ultra-thin flattened heat pipes with composite wick structure[J]. Applied Thermal Engineering, 2016, 102: 487-499. |
49 | Zhou W J, Xie P D, Li Y, et al. Thermal performance of ultra-thin flattened heat pipes[J]. Applied Thermal Engineering, 2017, 117: 773-781. |
50 | Zhou W J, Li Y, Chen Z S, et al. Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe[J]. Applied Thermal Engineering, 2019, 162: 114215. |
51 | Tang H, Weng C X, Tang Y, et al. Thermal performance enhancement of an ultra-thin flattened heat pipe with multiple wick structure[J]. Applied Thermal Engineering, 2021, 183: 116203. |
52 | Tang H, Weng C X, Tang Y, et al. Effect of inclination angle on the thermal performance of an ultrathin heat pipe with multi-scale wick structure[J]. International Communications in Heat and Mass Transfer, 2020, 118: 104908. |
53 | 朱明汉, 白鹏飞, 胡艳鑫, 等. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357. |
Zhu M H, Bai P F, Hu Y X, et al. Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick[J]. CIESC Journal, 2019, 70(4): 1349-1357. | |
54 | Aoki H, Shioya N, Ikeda M, et al. Development of ultra thin plate-type heat pipe with less than 1 mm thickness[C]//2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM). Santa Clara, CA, USA: IEEE, 2010: 217-222. |
55 | Lv L, Li J. Managing high heat flux up to 500 W/cm2 through an ultra-thin flat heat pipe with superhydrophilic wick[J]. Applied Thermal Engineering, 2017, 122: 593-600. |
56 | Li J, Lv L, Zhou G H, et al. Mechanism of a microscale flat plate heat pipe with extremely high nominal thermal conductivity for cooling high-end smartphone chips[J]. Energy Conversion and Management, 2019, 201: 112202. |
57 | Mochizuki M, Nguyen T, Saito Y, et al. Development of high performance thin heat pipe for cooling small form factor devices[C]//Proceedings of 2010 14th International Heat Transfer Conference. Washington, DC, USA: ASME, 2010, 49408: 453-457. |
58 | Tang Y, Tang H, Li J, et al. Experimental investigation of capillary force in a novel sintered copper mesh wick for ultra-thin heat pipes[J]. Applied Thermal Engineering, 2017, 115: 1020-1030. |
59 | Yang K S, Tu C W, Zhang W H, et al. A novel oxidized composite braided wires wick structure applicable for ultra-thin flattened heat pipes[J]. International Communications in Heat and Mass Transfer, 2017, 88: 84-90. |
60 | Xie X Z, Weng Q, Luo Z Q, et al. Thermal performance of the flat micro-heat pipe with the wettability gradient surface by laser fabrication[J]. International Journal of Heat and Mass Transfer, 2018, 125: 658-669. |
61 | Tang H, Tang Y, Yuan W, et al. Fabrication and capillary characterization of axially micro-grooved wicks for aluminium flat-plate heat pipes[J]. Applied Thermal Engineering, 2018, 129: 907-915. |
62 | Peng Y, Liu W Y, Liu B, et al. The performance of the novel vapor chamber based on the leaf vein system[J]. International Journal of Heat and Mass Transfer, 2015, 86: 656-666. |
63 | Liu W Y, Peng Y, Luo T, et al. The performance of the vapor chamber based on the plant leaf[J]. International Journal of Heat and Mass Transfer, 2016, 98: 746-757. |
64 | Zeng J, Lin L, Tang Y, et al. Fabrication and capillary characterization of micro-grooved wicks with reentrant cavity array[J]. International Journal of Heat and Mass Transfer, 2017, 104: 918-929. |
65 | Zeng J, Zhang S W, Chen G, et al. Experimental investigation on thermal performance of aluminum vapor chamber using micro-grooved wick with reentrant cavity array[J]. Applied Thermal Engineering, 2018, 130: 185-194. |
66 | Wiriyasart S, Naphon P. Thermal performance enhancement of vapor chamber by coating mini-channel heat sink with porous sintering media[J]. International Journal of Heat and Mass Transfer, 2018, 126: 116-122. |
67 | Velardo J, Date A, Singh R, et al. Experimental investigation of a vapour chamber heat spreader with hybrid wick structure[J]. International Journal of Thermal Sciences, 2019, 140: 28-35. |
68 | Zhou W J, Li Y, Chen Z S, et al. Experimental study on the heat transfer performance of ultra-thin flattened heat pipe with hybrid spiral woven mesh wick structure[J]. Applied Thermal Engineering, 2020, 170: 115009. |
69 | Zhou W J, Li Y, Chen Z S, et al. A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices[J]. Energy Conversion and Management, 2019, 180: 769-783. |
70 | Wong S C, Huang S F, Hsieh K C. Performance tests on a novel vapor chamber[J]. Applied Thermal Engineering, 2011, 31(10): 1757-1762. |
71 | Ji X B, Xu J L, Abanda A M. Copper foam based vapor chamber for high heat flux dissipation[J]. Experimental Thermal and Fluid Science, 2012, 40: 93-102. |
72 | Attia A A A, El-Assal B T A. Experimental investigation of vapor chamber with different working fluids at different charge ratios[J]. Ain Shams Engineering Journal, 2012, 3(3): 289-297. |
73 | Zhang M, Liu Z L, Ma G Y, et al. The experimental study on flat plate heat pipe of magnetic working fluid[J]. Experimental Thermal and Fluid Science, 2009, 33(7): 1100-1105. |
74 | Mohanraj C, Dineshkumar R, Murugan G. Experimental studies on effect of heat transfer with CuO-H2O nanofluid on flat plate heat pipe[J]. Materials Today: Proceedings, 2017, 4(2): 3852-3860. |
75 | Chen Y J, Wang P Y, Liu Z H, et al. Heat transfer characteristics of a new type of copper wire-bonded flat heat pipe using nanofluids[J]. International Journal of Heat and Mass Transfer, 2013, 67: 548-559. |
76 | Kim H J, Lee S H, Kim S B, et al. The effect of nanoparticle shape on the thermal resistance of a flat-plate heat pipe using acetone-based Al2O3 nanofluids[J]. International Journal of Heat and Mass Transfer, 2016, 92: 572-577. |
77 | Pandiyaraj P, Gnanavelbabu A, Saravanan P. Experimental analysis on thermal performance of fabricated flat plate heat pipe using titanium dioxide nanofluid[J]. Materials Today: Proceedings, 2018, 5(2): 8414-8423. |
78 | Bulut M, Kandlikar S G, Sozbir N. A review of vapor chambers[J]. Heat Transfer Engineering, 2019, 40(19): 1551-1573. |
79 | Ding C S, Soni G, Bozorgi P, et al. A flat heat pipe architecture based on nanostructured titania[J]. Journal of Microelectromechanical Systems, 2010, 19(4): 878-884. |
80 | Altman D H, Wasniewski J R, North M T, et al. Development of micro/nano engineered wick-based passive heat spreaders for thermal management of high power electronic devices[C]//Proceedings of ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems. Portland, Oregon, USA: ASME, 2011, 44625: 213-220. |
81 | Hose C L, Ibitayo D, Boteler L M, et al. Integrated vapor chamber heat spreader for power module applications[C]//Proceedings of ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems Collocated With the ASME 2017 Conference on Information Storage and Processing Systems. San Francisco, California, USA: ASME, 2017, 58097: 1-6. |
82 | Ju Y S, Kaviany M, Nam Y, et al. Planar vapor chamber with hybrid evaporator wicks for the thermal management of high-heat-flux and high-power optoelectronic devices[J]. International Journal of Heat and Mass Transfer, 2013, 60: 163-169. |
83 | Benson D A, Burchett S N, Kravitz S H, et al. Kovar micro heat pipe substrates for microelectronic cooling[R]. Office of Scientific and Technical Information (OSTI), 1999. |
84 | Liu T Y, Asheghi M, Goodson K E. Performance and manufacturing of silicon-based vapor chambers[J]. Applied Mechanics Reviews, 2021, 73(1): 010802. |
85 | Lewis R, Liew L A, Xu S S, et al. Microfabricated ultra-thin all-polymer thermal ground planes[J]. Science Bulletin, 2015, 60(7): 701-706. |
86 | Nematollahisarvestani A, Lewis R J, Lee Y C. Design of thermal ground planes for cooling of foldable smartphones[J]. Journal of Electronic Packaging, 2019, 141(2): 021004. |
87 | Oshman C J, Shi B, Li C, et al. Fabrication and testing of a flat polymer micro heat pipe[C]//TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. Denver, Colorado, USA: IEEE, 2009: 1999-2002. |
88 | Oshman C, Shi B, Li C, et al. The development of polymer-based flat heat pipes[J]. Journal of Microelectromechanical Systems, 2011, 20(2): 410-417. |
[1] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[2] | Peixu ZHOU, Yalun LI, Gongran YE, Yuan ZHUANG, Xilei WU, Zhikai GUO, Xiaohong HAN. Influence of physical properties of working fluids on leakage and diffusion characteristics of refrigerant in limited space [J]. CIESC Journal, 2023, 74(2): 953-967. |
[3] | Yixiu DONG, Ruzhu WANG. High temperature heat pump: cycle configurations, working fluids and application potentials [J]. CIESC Journal, 2023, 74(1): 133-144. |
[4] | Jiahui REN, Yu LIU, Chao LIU, Lang LIU, Ying LI. Critical temperature prediction of working fluids using molecular fingerprints and topological indices [J]. CIESC Journal, 2022, 73(4): 1493-1500. |
[5] | LU Pei, LUO Xianglong, CHEN Jianyong, YANG Zhi, LIANG Yingzong, CHEN Ying. Operating characteristics and advanced exergy analysis of plate heat exchangers and their thermal system [J]. CIESC Journal, 2021, 72(S1): 512-519. |
[6] | Zihang LI, Zhanbo WANG, Zheng MIAO, Xianbing JI. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle [J]. CIESC Journal, 2021, 72(9): 4487-4495. |
[7] | LIANG Kunfeng, FENG Changzhen, WANG Moran, DONG Bin, WANG Lin, LIU Ruijian. Advanced exergy analysis of heat pump performance affected by heat transfer matching characteristics of non-azeotropic refrigerants [J]. CIESC Journal, 2021, 72(4): 2038-2046. |
[8] | TIAN Zhongxuan, WANG Changhong, ZHEN Huanpei, HUANG Jiongtong. Heat transfer characteristic of flat plate heat pipe cooling system for LED [J]. CIESC Journal, 2017, 68(S1): 155-161. |
[9] | XU Junjun, LUO Xianglong, WANG Yongzhen, ZHU Qiannan, CHEN Ying, MO Songping, HUANG Hongyu. Optimum selection of ORC working fluid using multi-level fuzzy optimization and non-structural fuzzy decision [J]. CIESC Journal, 2015, 66(3): 1051-1058. |
[10] | ZHANG Xinming, YU Bingxian, WANG Chun. Comprehensive evaluation index and performance analysis of organic Rankine cycle system considering environment impact [J]. CIESC Journal, 2014, 65(12): 4978-4984. |
[11] | WU Shuangying, YI Tiantian, XIAO Lan. Parametric optimization and performance analysis of subcritical organic Rankine cycle based on multi-objective function [J]. CIESC Journal, 2014, 65(10): 4078-4085. |
[12] | CUI Xiaoyu, DUAN Weiwei, QIAO Tieliang, ZHU Yue. Heat transfer performance of pulsating heat pipe with ethanol-based binary mixtures [J]. CIESC Journal, 2014, 65(10): 3852-3860. |
[13] | HAN Zhonghe,DU Yan,WANG Zhi. Medium selection of organic Rankine cycle(ORC) in low temperature waste heat [J]. Chemical Industry and Engineering Progree, 2014, 33(09): 2279-2285. |
[14] | HAN Guangming,LI Minxia,MA Yitai. Simulation and calculation for performance of an air-conditioning condenser with low GWP working fluids [J]. Chemical Industry and Engineering Progree, 2014, 33(04): 824-830. |
[15] | LONG Zhiqiang, ZHANG Peng. Heat transfer performance of cryogenic heat pipe with binary mixture working fluid [J]. CIESC Journal, 2012, 63(S1): 69-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||