CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5607-5619.DOI: 10.11949/0438-1157.20210762
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yan SUN(),Xiaowen SHEN,Xiwei XU(),Enchen JIANG,Xuecong LIU
Received:
2021-06-08
Revised:
2021-08-09
Online:
2021-11-12
Published:
2021-11-05
Contact:
Xiwei XU
通讯作者:
许细薇
作者简介:
孙焱(1989—),男,博士,基金资助:
CLC Number:
Yan SUN, Xiaowen SHEN, Xiwei XU, Enchen JIANG, Xuecong LIU. Coupled chemical looping and catalytic reforming to produce syngas from pyrolysis bio-oil[J]. CIESC Journal, 2021, 72(11): 5607-5619.
孙焱, 沈晓文, 许细薇, 蒋恩臣, 刘雪聪. 化学链耦合催化重整热解生物油制备合成气[J]. 化工学报, 2021, 72(11): 5607-5619.
Add to citation manager EndNote|Ris|BibTeX
样品名称 | 比表面积/(m2/g) | 平均孔径/nm | 孔容/(cm3/g) |
---|---|---|---|
VR-NiFe原样 | 1.8554 | 19.6952 | 0. 132 ×10-3 |
VR-NiFe反应后 | 1.7037 | 21.5902 | 0.032 ×10-3 |
Si-NiFe原样 | 23.5204 | 26.1521 | 0. 846 ×10-3 |
Si-NiFe反应后 | 17.2746 | 26.5620 | 0. 260 ×10-3 |
Table 1 Pore structure parameters of the spend and fresh OCs
样品名称 | 比表面积/(m2/g) | 平均孔径/nm | 孔容/(cm3/g) |
---|---|---|---|
VR-NiFe原样 | 1.8554 | 19.6952 | 0. 132 ×10-3 |
VR-NiFe反应后 | 1.7037 | 21.5902 | 0.032 ×10-3 |
Si-NiFe原样 | 23.5204 | 26.1521 | 0. 846 ×10-3 |
Si-NiFe反应后 | 17.2746 | 26.5620 | 0. 260 ×10-3 |
1 |
Balasundram V, Ibrahim N, Kasmani R M, et al. Catalytic upgrading of biomass-derived pyrolysis vapour over metal-modified HZSM-5 into BTX: a comprehensive review[J]. Biomass Conversion and Biorefinery, 2020. doi: 10.1007/s13399-020-00909-5.
DOI URL |
2 | Bohre A, Alam M I, Avasthi K, et al. Low temperature transformation of lignocellulose derived bioinspired molecules to aviation fuel precursor over magnesium-lanthanum mixed oxide catalyst[J]. Applied Catalysis B: Environmental, 2020, 276: 119069. |
3 | Liu W, You W Q, Gong Y T, et al. High-efficiency electrochemical hydrodeoxygenation of bio-phenols to hydrocarbon fuels by a superacid-noble metal particle dual-catalyst system[J]. Energy & Environmental Science, 2020, 13(3): 917-927. |
4 | 罗泽军, 胡永华, 王雨松, 等. 重质生物油理化性质及其热解特性研究[J]. 化工学报, 2019, 70(8): 3196-3201. |
Luo Z J, Hu Y H, Wang Y S, et al. Physicochemical properties and pyrolysis characteristics of heavy biooil[J]. CIESC Journal, 2019, 70(8): 3196-3201. | |
5 | Shu R Y, Li R X, Lin B Q, et al. A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels[J]. Biomass and Bioenergy, 2020, 132: 105432. |
6 | Ouedraogo A S, Bhoi P R. Recent progress of metals supported catalysts for hydrodeoxygenation of biomass derived pyrolysis oil[J]. Journal of Cleaner Production, 2020, 253: 119957. |
7 | 张帆, 殷实, 冷富荣, 等. 基于生物炭载体催化剂的生物油重整制氢研究[J]. 工程热物理学报, 2016, 37(5): 1123-1128. |
Zhang F, Yin S, Leng F R, et al. Study on hydrogen production from bio oil reforming based on biochar supported catalyst [J]. Journal of Engineering Thermophysics, 2016, 37 (5): 1123-1128. | |
8 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress of biomass thermochemical conversion and upgrading and its catalysts [J]. CIESC Journal, 2020, 71 (8): 3416-3427. | |
9 | 赵文祥, 杨双霞, 陈雷, 等. 生物质热化学催化转化制富氢合成气研究进展[J]. 现代化工, 2021, 41(4): 38-42. |
Zhao W X, Yang S X, Chen L, et al. Research progress of biomass thermochemical catalytic conversion to hydrogen rich syngas [J]. Modern Chemical Industry, 2021, 41 (4): 38-42. | |
10 | Valle B, García-Gómez N, Remiro A, et al. Dual catalyst-sorbent role of dolomite in the steam reforming of raw bio-oil for producing H2-rich syngas[J]. Fuel Processing Technology, 2020, 200: 106316. |
11 | Kang Y, Han Y J, Tian M, et al. Promoted methane conversion to syngas over Fe-based garnets via chemical looping[J]. Applied Catalysis B: Environmental, 2020, 278: 119305. |
12 | Liu C L, Chen D, Ashok J, et al. Chemical looping steam reforming of bio-oil for hydrogen-rich syngas production: effect of doping on LaNi0.8Fe0.2O3 perovskite[J]. International Journal of Hydrogen Energy, 2020, 45(41): 21123-21137. |
13 | Zhao K, He F, Huang Z, et al. Perovskite-type oxides LaFe1-xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production[J]. Applied Energy, 2016, 168: 193-203. |
14 | Jin Z, Yi X F, Wang L, et al. Metal-acid interfaces enveloped in zeolite crystals for cascade biomass hydrodeoxygenation[J]. Applied Catalysis B: Environmental, 2019, 254: 560-568. |
15 | 颜蓓蓓, 王建, 刘彬, 等.生物油金属水热原位加氢提质技术研究进展[J]. 化工学报, 2021, 72(4): 1783-1795. |
Yan B B, Wang J, Liu B, et al. Research progress of bio-oil metal hydrothermal in-situ hydrogenation technology[J]. CIESC Journal, 2021, 72(4): 1783-1795. | |
16 | Mehla S, Kukade S, Kumar P, et al. Fine tuning H-transfer and β-scission reactions in VGO FCC using metal promoted dual functional ZSM-5[J]. Fuel, 2019, 242: 487-495. |
17 | Zhou H B, Zhang T T, Sui Z J, et al. A single source method to generate Ru-Ni-MgO catalysts for methane dry reforming and the kinetic effect of Ru on carbon deposition and gasification[J]. Applied Catalysis B: Environmental, 2018, 233: 143-159. |
18 | Gomes J F, Frasson D, Pereira J L, et al. Ecotoxicity variation through parabens degradation by single and catalytic ozonation using volcanic rock[J]. Chemical Engineering Journal, 2019, 360: 30-37. |
19 | Gomes J, Frasson D, Quinta-Ferreira R, et al. Removal of enteric pathogens from real wastewater using single and catalytic ozonation[J]. Water, 2019, 11(1): 127. |
20 | Li Z, Yan Q H, Jiang Q, et al. Oxygen vacancy mediated CuyCo3-yFe1Ox mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect[J]. Applied Catalysis B: Environmental, 2020, 269: 118827. |
21 | 孙焱. 松子壳生物油制备和催化改性试验研究[D]. 哈尔滨: 东北农业大学, 2014. |
Sun Y. Study on the preparation and catalytic upgrading of pine-nut shell bio-oil[D]. Harbin: Northeast Agricultural University, 2014. | |
22 | Li M R, Wang G C. The mechanism of ethanol steam reforming on the Co0 and Co2+ sites: a DFT study[J]. Journal of Catalysis, 2018, 365: 391-404. |
23 | Badawi M, Paul J F, Cristol S, et al. Guaiacol derivatives and inhibiting species adsorption over MoS2 and CoMoS catalysts under HDO conditions: a DFT study[J]. Catalysis Communications, 2011, 12(10): 901-905. |
24 | Li X B, Xue L J, Zhu Y Y, et al. Mechanistic study of bio-oil catalytic steam reforming for hydrogen production: acetic acid decomposition[J]. International Journal of Hydrogen Energy, 2018, 43(29): 13212-13224. |
25 | Lee D K, Ahn S J, Kim D S. Mechanistic studies of formation of carbon deposits on supported Pt catalysts during wet oxidation of phenol [C]//Proceedings of the 9th International Symposium. Amsterdam: Elsevier, 2001: 69-76. |
26 | 方修忠.高效抗积炭Ni基甲烷重整制氢催化剂的制备和性能研究[D].南昌: 南昌大学, 2016. |
Fang X Z. Preparation and performance of high efficiency carbon deposition resistant Ni based catalyst for hydrogen production from methane reforming [D]. Nanchang: Nanchang University, 2016. | |
27 | 郎林, 李键铭, 杨文申, 等. Ni/KZSM-5催化剂的生物乙醇水蒸气重整制氢催化性能[J]. 可再生能源, 2017, 35(2): 185-191. |
Lang L, Li J M, Yang W S, et al. Bio-ethanol catalytic steam reforming over Ni/KZSM-5 catalysts[J]. Renewable Energy Resources, 2017, 35(2): 185-191. | |
28 | 梅占强, 何素芳, 陈柯臻, 等. 乙醇水蒸气重整制氢催化剂的研究进展[J]. 环境化学, 2017, 36(10): 2126-2139. |
Mei Z Q, He S F, Chen K Z, et al. Research progress of catalysts for hydrogen production from ethanol steam reforming [J]. Environmental Chemistry, 2017, 36 (10): 2126-2139. | |
29 | 冉艳雄. Ni基催化剂上乙酸蒸汽重整反应机理研究[D]. 太原: 太原理工大学, 2017. |
Ran Y X. DFT studies of acetic acid steam reforming over Ni-based catalysts[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
30 | 吴国鹏. 光催化重整甲醇及生物质衍生物制氢[D]. 大连: 大连理工大学, 2007. |
Wu G P. H2 prodution via photocatalytic reforming of methanol and biomass-derived compounds[D]. Dalian: Dalian University of Technology, 2007. | |
31 | 郑朝霞.不同钌基催化剂在水相中催化愈创木酚选择性加氢脱氧到苯的研究[D].上海: 华东师范大学, 2018. |
Zheng Z X. Study on selective hydrodeoxygenation of guaiacol to benzene catalyzed by different ruthenium based catalysts in aqueous phase [D]. Shanghai: East China Normal University, 2018. | |
32 | Shi D M, Vohs J M. Lignin-derived oxygenate reforming on a bimetallic surface: the reaction of benzaldehyde on Zn/Pt(111)[J]. Surface Science, 2016, 650: 161-166. |
33 | Du Z Y, Zhang Z H, Xu C, et al. Low-temperature steam reforming of toluene and biomass tar over biochar-supported Ni nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3111-3119. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Enzhe BI, Shuangxi LI, Lianxiang SHA, Dengyu LIU, Kaifang CHEN. Multi-objective optimization analysis of high temperature dynamic pressure split ring seal parameters [J]. CIESC Journal, 2023, 74(6): 2565-2579. |
[3] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[4] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[5] | Chuanbao XIAO, Linyang LI, Wufeng LIU, Nianbing ZHONG, Quanhua XIE, Dengjie ZHONG, Haixing CHANG. Effective removal of 2,4,6-trichlorophenol by coupling photocatalysis with ion exchange adsorption [J]. CIESC Journal, 2023, 74(4): 1587-1597. |
[6] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[7] | Xin LI, Shaojuan ZENG, Kuilin PENG, Lei YUAN, Xiangping ZHANG. Research progress and tendency of CO2 electrocatalytic reduction to syngas [J]. CIESC Journal, 2023, 74(1): 313-329. |
[8] | Yiping FAN, Chunxi LU. Research progress on dedust scheme of coupling centrifugal force field with moving bed filtration [J]. CIESC Journal, 2023, 74(1): 157-169. |
[9] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
[10] | Jie GUO, Fan ZHANG, Shiyu XIE, Lixin YOU, Yaguang SUN. NHC-Pd functionalized coordination polymer (NHC-Pd@Zn-L): synthesis, characterization and catalytic performance in Suzuki-Miyaura cross-coupling reaction [J]. CIESC Journal, 2022, 73(8): 3608-3614. |
[11] | Zhenyu LIU. Origin of low productivity of underground coal gasification: diffusion and reaction in stagnant boundary layer and gasification tunnel [J]. CIESC Journal, 2022, 73(8): 3299-3306. |
[12] | Lianfeng ZHU, Chao WANG, Mengjuan ZHANG, Fangzheng LIU, Xin JIA, Ping AN, Guangwen XU, Zhennan HAN. Fluidized bed two-stage gasification of coal with steam/O2 for production of low-tar syngas [J]. CIESC Journal, 2022, 73(8): 3720-3730. |
[13] | Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation [J]. CIESC Journal, 2022, 73(8): 3448-3460. |
[14] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
[15] |
Guoxin SUN, Mengxuan GOU, Cheng ZHOU, Pei CHANG, Gaohong HE, Xiaobin JIANG.
Membrane distillation crystallization coupling process for the treatment of high concentration Na+//NO |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||