CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5620-5632.DOI: 10.11949/0438-1157.20210799
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xueyu REN(),Jingpei CAO(),Naiyu YAO,Xiaoyan ZHAO,Xiaobo FENG,Tianlong LIU,Yunpeng ZHAO
Received:
2021-06-17
Revised:
2021-08-26
Online:
2021-11-12
Published:
2021-11-05
Contact:
Jingpei CAO
任雪宇(),曹景沛(),姚乃瑜,赵小燕,冯晓博,刘天龙,赵云鹏
通讯作者:
曹景沛
作者简介:
任雪宇(1992—),女,博士研究生,基金资助:
CLC Number:
Xueyu REN, Jingpei CAO, Naiyu YAO, Xiaoyan ZHAO, Xiaobo FENG, Tianlong LIU, Yunpeng ZHAO. Turning hierarchical ZSM-5 by template methods and its application in catalyzing lignite-derived volatiles to light aromatics[J]. CIESC Journal, 2021, 72(11): 5620-5632.
任雪宇, 曹景沛, 姚乃瑜, 赵小燕, 冯晓博, 刘天龙, 赵云鹏. 模板法调控多级孔ZSM-5催化褐煤挥发分制备轻质芳烃的研究[J]. 化工学报, 2021, 72(11): 5620-5632.
Add to citation manager EndNote|Ris|BibTeX
Sample | Surface area/(m2/g) | Pore volume/(cm3/g) | Dave⑤/nm | ||||
---|---|---|---|---|---|---|---|
SBET① | Smicro② | Sext② | Vtotal④ | Vmicro② | Vext③ | ||
CB | 1351 | 890 | 461 | 3.35 | 0.41 | 2.94 | 10.00 |
NaClO-CB | 1026 | 654 | 372 | 2.54 | 0.31 | 2.23 | 9.91 |
H2O2-CB | 450 | 101 | 349 | 1.47 | 0.05 | 1.42 | 13.00 |
HNO3-CB | 1232 | 838 | 394 | 1.97 | 0.39 | 1.58 | 6.38 |
HeZ5 | 386 | 350 | 36 | 0.23 | 0.14 | 0.09 | 2.43 |
HeZ5-Ⅰ | 345 | 312 | 33 | 0.21 | 0.15 | 0.06 | 2.44 |
HeZ5-Ⅱ | 364 | 312 | 52 | 0.23 | 0.16 | 0.07 | 2.56 |
HeZ5-Ⅲ | 377 | 347 | 30 | 0.21 | 0.16 | 0.05 | 2.27 |
HeZ5-Ⅳ | 344 | 264 | 80 | 0.19 | 0.16 | 0.03 | 2.23 |
HZSM-5 | 422 | 376 | 46 | 0.23 | 0.16 | 0.07 | 3.70 |
Table 1 The textural properties of oxidation modified CB and hierarchical ZSM-5
Sample | Surface area/(m2/g) | Pore volume/(cm3/g) | Dave⑤/nm | ||||
---|---|---|---|---|---|---|---|
SBET① | Smicro② | Sext② | Vtotal④ | Vmicro② | Vext③ | ||
CB | 1351 | 890 | 461 | 3.35 | 0.41 | 2.94 | 10.00 |
NaClO-CB | 1026 | 654 | 372 | 2.54 | 0.31 | 2.23 | 9.91 |
H2O2-CB | 450 | 101 | 349 | 1.47 | 0.05 | 1.42 | 13.00 |
HNO3-CB | 1232 | 838 | 394 | 1.97 | 0.39 | 1.58 | 6.38 |
HeZ5 | 386 | 350 | 36 | 0.23 | 0.14 | 0.09 | 2.43 |
HeZ5-Ⅰ | 345 | 312 | 33 | 0.21 | 0.15 | 0.06 | 2.44 |
HeZ5-Ⅱ | 364 | 312 | 52 | 0.23 | 0.16 | 0.07 | 2.56 |
HeZ5-Ⅲ | 377 | 347 | 30 | 0.21 | 0.16 | 0.05 | 2.27 |
HeZ5-Ⅳ | 344 | 264 | 80 | 0.19 | 0.16 | 0.03 | 2.23 |
HZSM-5 | 422 | 376 | 46 | 0.23 | 0.16 | 0.07 | 3.70 |
Sample | C 1s | O 1s | C/O(atomic ratio) | |||||
---|---|---|---|---|---|---|---|---|
C—C | C—O | CO | OC—O | —CO | C—O | OC—O | ||
CB | 35.10 | 24.15 | 19.64 | 21.11 | 34.42 | 33.23 | 32.35 | 10.10 |
HNO3-CB | 36.18 | 22.31 | 19.44 | 22.07 | 35.04 | 33.15 | 31.81 | 3.85 |
Table 2 The relative content of functional groups in XPS spectra
Sample | C 1s | O 1s | C/O(atomic ratio) | |||||
---|---|---|---|---|---|---|---|---|
C—C | C—O | CO | OC—O | —CO | C—O | OC—O | ||
CB | 35.10 | 24.15 | 19.64 | 21.11 | 34.42 | 33.23 | 32.35 | 10.10 |
HNO3-CB | 36.18 | 22.31 | 19.44 | 22.07 | 35.04 | 33.15 | 31.81 | 3.85 |
Catalysts | Acidity/(mmol/g) | ||
---|---|---|---|
Strong acid | Weak acid | Total acid | |
HeZ5 | — | 0.57 | 0.57 |
HeZ5-Ⅰ | 0.11 | 0.18 | 0.29 |
HeZ5-Ⅱ | 0.06 | 0.12 | 0.18 |
HeZ5-Ⅲ | 0.11 | 0.18 | 0.29 |
HeZ5-Ⅳ | — | 0.11 | 0.12 |
HZSM-5[ | 0.36 | 0.83 | 1.19 |
Table 3 The acidic amount of hierarchical ZSM-5 via “hard” and “soft” template methods
Catalysts | Acidity/(mmol/g) | ||
---|---|---|---|
Strong acid | Weak acid | Total acid | |
HeZ5 | — | 0.57 | 0.57 |
HeZ5-Ⅰ | 0.11 | 0.18 | 0.29 |
HeZ5-Ⅱ | 0.06 | 0.12 | 0.18 |
HeZ5-Ⅲ | 0.11 | 0.18 | 0.29 |
HeZ5-Ⅳ | — | 0.11 | 0.12 |
HZSM-5[ | 0.36 | 0.83 | 1.19 |
Fig.10 Products carbon yields, carbon conversion yield and gaseous components distribution from catalytic reforming of volatiles over hierarchical ZSM-5
1 | Ren X Y, Feng X B, Cao J P, et al. Catalytic conversion of coal and biomass volatiles: a review[J]. Energy & Fuels, 2020, 34(9): 10307-10363. |
2 | Qu H Q, Ma Y R, Li B, et al. Hierarchical zeolites: synthesis, structural control, and catalytic applications[J]. Emergent Materials, 2020, 3(3): 225-245. |
3 | Li Y, Li L, Yu J H. Applications of zeolites in sustainable chemistry[J]. Chem, 2017, 3(6): 928-949. |
4 | Liu Y Q, Yao Q X, Sun M, et al. Catalytic fast pyrolysis of coal tar asphaltene over zeolite catalysts to produce high-grade coal tar: an analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105127. |
5 | Bhoi P R, Ouedraogo A S, Soloiu V, et al. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable and Sustainable Energy Reviews, 2020, 121: 109676. |
6 | Ren X Y, Cao J P, Zhao X Y, et al. Enhancement of aromatic products from catalytic fast pyrolysis of lignite over hierarchical HZSM-5 by piperidine-assisted desilication[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1792-1802. |
7 | 赵岩, 刘银. HZSM-5分子筛催化热裂解生物质制备芳烃化合物[J]. 化工新型材料, 2017, 45(2): 145-147. |
Zhao Y, Liu Y. Production of aromatic hydrocarbons through catalytic pyrolysis of biomass used HZSM-5 as catalyst[J]. New Chemical Materials, 2017, 45(2): 145-147. | |
8 | Nishu, Liu R H, Rahman M M, et al. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: focus on structure[J]. Fuel Processing Technology, 2020, 199: 106301. |
9 | Ren X Y, Cao J P, Zhao X Y, et al. Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5[J]. Fuel, 2018, 218: 33-40. |
10 | 王霏, 郑云武, 黄元波, 等. ZSM-5催化生物质三组分和松木热解生物油组分分析[J]. 农业工程学报, 2016, 32(S2): 331-337. |
Wang F, Zheng Y W, Huang Y B, et al. Component analysis of pyrolysis bio-oil from three major components of biomass and Pinus yunnanensis by ZSM-5 catalytic[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 331-337. | |
11 | Ren X Y, Cao J P, Zhao X Y, et al. Catalytic conversion of lignite pyrolysis volatiles to light aromatics over ZSM-5: SiO2/Al2O3 ratio effects and mechanism insights[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 22-30. |
12 | Wang J X, Cao J P, Zhao X Y, et al. In situ upgrading of cellulose pyrolysis volatiles using hydrofluorinated and platinum-loaded HZSM-5 for high selectivity production of light aromatics[J]. Industrial & Engineering Chemistry Research, 2019, 58(49): 22193-22201. |
13 | Pavlačková Z, Košová G, Žilková N, et al. Formation of mesopores in ZSM-5 by carbon templating[M]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2006: 905-912. |
14 | 张壮壮, 刘楠, 安重鑫, 等. 多级孔ZSM-5分子筛对低阶煤流化床快速热解产物分布的影响[J]. 燃料化学学报, 2021, 49(4): 407-414. |
Zhang Z Z, Liu N, An C X, et al. Effect of hierarchical ZSM-5 zeolites on product distribution of low rank coal fast pyrolysis in a fluidized bed[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 407-414. | |
15 | Koo J B, Jiang N Z, Saravanamurugan S, et al. Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating[J]. Journal of Catalysis, 2010, 276(2): 327-334. |
16 | Zhao S F, Wang W D, Wang L Z, et al. Tuning hierarchical ZSM-5 zeolite for both gas- and liquid-phase biorefining[J]. ACS Catalysis, 2020, 10(2): 1185-1194. |
17 | Goodarzi F, Herrero I P, Kalantzopoulos G N, et al. Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin protective shell of silicalite-1 for MTH conversion[J]. Microporous and Mesoporous Materials, 2020, 292: 109730. |
18 | Imyen T, Wannapakdee W, Limtrakul J, et al. Role of hierarchical micro-mesoporous structure of ZSM-5 derived from an embedded nanocarbon cluster synthesis approach in isomerization of alkenes, catalytic cracking and hydrocracking of alkanes[J]. Fuel, 2019, 254: 115593. |
19 | 魏玉函, 张馨月. 改性炭黑的表面性质与微观结构[J]. 胶体与聚合物, 2018, 36(4): 172-174, 177. |
Wei Y H, Zhang X Y. Surface properties and microstructure of the modified carbon black[J]. Chinese Journal of Colloid & Polymer, 2018, 36(4): 172-174, 177. | |
20 | Wang X, Chen H B, Meng F J, et al. CTAB resulted direct synthesis and properties of hierarchical ZSM-11/5 composite zeolite in the absence of template[J]. Microporous and Mesoporous Materials, 2017, 243: 271-280. |
21 | 李红玑, 周孝德, 张建民, 等. CTAB对多级孔分子筛合成及孔道层次结构影响[J]. 无机材料学报, 2018, 33(6): 629-634. |
Li H J, Zhou X D, Zhang J M, et al. CTAB on synthesis and pore structure of hierarchical zeolite[J]. Journal of Inorganic Materials, 2018, 33(6): 629-634. | |
22 | Ren X Y, Cao J P, Zhao S X, et al. Insights into coke location of catalyst deactivation during in situ catalytic reforming of lignite pyrolysis volatiles over cobalt-modified zeolites[J]. Applied Catalysis A: General, 2021, 613: 118018. |
23 | Puértolas B, Veses A, Callén M S, et al. Porosity-acidity interplay in hierarchical ZSM-5 zeolites for pyrolysis oil valorization to aromatics[J]. ChemSusChem, 2015, 8(19): 3283-3293. |
24 | Ren X Y, Zhao S X, Cao J P, et al. Effect of coal ranks on light aromatics production during reforming of pyrolysis volatiles over HZSM-5 under Ar and H2-assisted atmospheres[J]. Journal of Analytical and Applied Pyrolysis, 2020, 152: 104958. |
25 | He J Q, Chen D Y, Li N J, et al. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene[J]. Applied Catalysis B: Environmental, 2020, 265: 118560. |
26 | 李琳, 龚勇, 刘平, 等. 硝酸氧化法改善炭黑表面活性的研究[J]. 炭素技术, 2018, 37(4): 56-60. |
Li L, Gong Y, Liu P, et al. Study on the improvement of surface activity of carbon black by nitric acid oxidation[J]. Carbon Techniques, 2018, 37(4): 56-60. | |
27 | 梁晓娟, 杨昕宇, 弓中伟. 双氧水氧化制备高分散性炭黑[J]. 硅酸盐通报, 2008, 27(6): 1124-1128. |
Liang X J, Yang X Y, Gong Z W. Preparation of high dispersal carbon black by hydrogen peroxide oxidation method in aqueous solution[J]. Bulletin of the Chinese Ceramic Society, 2008, 27(6): 1124-1128. | |
28 | 张兰兰, 宋宇, 李国栋, 等. 不同模板剂合成具有介微结构的ZSM-5分子筛及其甲醇制丙烯性能[J]. 物理化学学报, 2015, 31(11): 2139-2150. |
Zhang L L, Song Y, Li G D, et al. ZSM-5 zeolite with micro-mesoporous structures synthesized using different templates for methanol to propylene reaction[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2139-2150. | |
29 | 陈爽, 韩顺玉, 白龙律, 等. 极浓体系碳模板合成介孔ZSM-5分子筛[J]. 天然气化工(C1化学与化工), 2018, 43(4): 27-30, 108. |
Chen S, Han S Y, Bai L L, et al. Synthesis of mesoporous ZSM-5 zeolite in an extremely concentrated system by carbon template[J]. Natural Gas Chemical Industry, 2018, 43(4): 27-30, 108. | |
30 | Han S Y, Wang Z, Meng L Y, et al. Synthesis of uniform mesoporous ZSM-5 using hydrophilic carbon as a hard template[J]. Materials Chemistry and Physics, 2016, 177: 112-117. |
31 | Feng R, Yan X L, Hu X Y, et al. Phosphorus-modified b-axis oriented hierarchical ZSM-5 zeolites for enhancing catalytic performance in a methanol to propylene reaction[J]. Applied Catalysis A: General, 2020, 594: 117464. |
32 | Ren X Y, Cao J P, Zhao S X, et al. Encapsulation Ni in HZSM-5 for catalytic hydropyrolysis of biomass to light aromatics[J]. Fuel Processing Technology, 2021, 218: 106854. |
33 | Zhang J S, Ding H, Zhang Y X, et al. An efficient one-pot strategy for synthesizing hierarchical aluminosilicate zeolites using single structure directing agent[J]. Chemical Engineering Journal, 2018, 335: 822-830. |
34 | Tarach K A, Tekla J, Makowski W, et al. Catalytic dehydration of ethanol over hierarchical ZSM-5 zeolites: studies of their acidity and porosity properties[J]. Catalysis Science & Technology, 2016, 6(10): 3568-3584. |
35 | Castaño P, Elordi G, Ibañez M, et al. Pathways of coke formation on an MFI catalyst during the cracking of waste polyolefins[J]. Catalysis Science & Technology, 2012, 2(3): 504. |
36 | Custodis V B, Hemberger P, Ma Z, et al. Mechanism of fast pyrolysis of lignin: studying model compounds[J]. The Journal of Physical Chemistry B, 2014, 118(29): 8524-8531. |
37 | Castaño P, Elordi G, Olazar M, et al. Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene[J]. Applied Catalysis B: Environmental, 2011, 104(1/2): 91-100. |
38 | Chaouati N, Soualah A, Chater M, et al. Mechanisms of coke growth on mordenite zeolite[J]. Journal of Catalysis, 2016, 344: 354-364. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[3] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[4] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[5] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[6] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[7] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[8] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
[9] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[10] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[11] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[12] | Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products [J]. CIESC Journal, 2022, 73(8): 3461-3471. |
[13] | Kaihong TANG, Xiaofeng HE, Guiqiu XU, Yang YU, Xiaofeng LIU, Tiejun GE, Ailing ZHANG. Review on combustion behavior and flame retardant research of phenolic foams [J]. CIESC Journal, 2022, 73(8): 3483-3500. |
[14] | Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857. |
[15] | Yong’an CHEN, Anning ZHOU, Yunlong LI, Zhiwei SHI, Xinfu HE, Weihong JIAO. Preparation and coal pyrolysis performance of magnetic MgFe2O4 and its core-shell catalysts [J]. CIESC Journal, 2022, 73(7): 3026-3037. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||