CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6161-6175.DOI: 10.11949/0438-1157.20211264
• Reviews and monographs • Previous Articles Next Articles
Peican WANG(),Lei WAN,Zi'ang XU,Qin XU,Baoguo WANG()
Received:
2021-09-01
Revised:
2021-11-03
Online:
2021-12-22
Published:
2021-12-05
Contact:
Baoguo WANG
通讯作者:
王保国
作者简介:
王培灿(1993—),男,博士研究生,基金资助:
CLC Number:
Peican WANG, Lei WAN, Zi'ang XU, Qin XU, Baoguo WANG. Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective[J]. CIESC Journal, 2021, 72(12): 6161-6175.
王培灿, 万磊, 徐子昂, 许琴, 王保国. 碱性膜电解水制氢技术现状与展望[J]. 化工学报, 2021, 72(12): 6161-6175.
Add to citation manager EndNote|Ris|BibTeX
项目 | 碱性水溶液 (AWE) | 质子交换膜 (PEMWE) | 碱性离子膜 (AEM) |
---|---|---|---|
温度/℃ | 70~90 | 65~85 | 65~85 |
压强/105 Pa | 1~32 | 1~35 | 1~32 |
电流密度/(A·cm-2) | 0.2~0.5 | 1.5~2.5 | 0.8~2.1 |
标准工况下能耗/(kWh·m-3 H2) | 4.3~5.1 | 4.3~4.6 | 4.2~4.6 |
电解液 | 5~7 mol·L-1 KOH | 纯水 | 1 mol·L-1 KOH/纯水 |
隔膜 | 石棉布、PPS布 | 全氟磺酸膜 | 阴离子膜 |
阳极(析氧电极) | 不锈钢镀镍 | 氧化铱 | 镍网 |
阴极(析氢电极) | 不锈钢镀镍 | 贵金属铂碳 | NiFeCo合金 |
双极板 | 不锈钢镀镍 | 不锈钢镀镍 | 不锈钢镀镍 |
技术成熟度 | 9 | 7 | 4 |
Table 1 Main characters of hydrogen production technologies by water electrolysis
项目 | 碱性水溶液 (AWE) | 质子交换膜 (PEMWE) | 碱性离子膜 (AEM) |
---|---|---|---|
温度/℃ | 70~90 | 65~85 | 65~85 |
压强/105 Pa | 1~32 | 1~35 | 1~32 |
电流密度/(A·cm-2) | 0.2~0.5 | 1.5~2.5 | 0.8~2.1 |
标准工况下能耗/(kWh·m-3 H2) | 4.3~5.1 | 4.3~4.6 | 4.2~4.6 |
电解液 | 5~7 mol·L-1 KOH | 纯水 | 1 mol·L-1 KOH/纯水 |
隔膜 | 石棉布、PPS布 | 全氟磺酸膜 | 阴离子膜 |
阳极(析氧电极) | 不锈钢镀镍 | 氧化铱 | 镍网 |
阴极(析氢电极) | 不锈钢镀镍 | 贵金属铂碳 | NiFeCo合金 |
双极板 | 不锈钢镀镍 | 不锈钢镀镍 | 不锈钢镀镍 |
技术成熟度 | 9 | 7 | 4 |
制备方法 | 优点 | 缺点 | 适用情况 |
---|---|---|---|
水热法/溶剂热法 | 高效,通用,制备催化剂稳定,自支撑与粉末催化剂均可制备 | 需要在高压反应釜中进行具有一定安全风险,且不适用于大面积工业化制备 | 通常用于制备金属氧化物、氢氧化物、羟基氧化物等催化材料 |
电化学沉积法 | 简单,高效,反应时间短,催化剂负载量、形貌可调控 | 大面积制备催化剂时会面临电沉积不均匀的问题 | 需要外加电场 |
化学气相沉积法 | 制备金属磷/硫/硒化物的有效手段 | 通常需要与其他制备方法耦合 | 可用于制备过渡金属磷/硫/硒化物 |
化学溶液法 | 操作简单,反应条件温和,制备成本低,易于放大 | 反应时间较长,金属离子负载量很低 | 大规模制备有独特优势 |
Table 2 Comparisons of preparation methods of self-supported catalysts
制备方法 | 优点 | 缺点 | 适用情况 |
---|---|---|---|
水热法/溶剂热法 | 高效,通用,制备催化剂稳定,自支撑与粉末催化剂均可制备 | 需要在高压反应釜中进行具有一定安全风险,且不适用于大面积工业化制备 | 通常用于制备金属氧化物、氢氧化物、羟基氧化物等催化材料 |
电化学沉积法 | 简单,高效,反应时间短,催化剂负载量、形貌可调控 | 大面积制备催化剂时会面临电沉积不均匀的问题 | 需要外加电场 |
化学气相沉积法 | 制备金属磷/硫/硒化物的有效手段 | 通常需要与其他制备方法耦合 | 可用于制备过渡金属磷/硫/硒化物 |
化学溶液法 | 操作简单,反应条件温和,制备成本低,易于放大 | 反应时间较长,金属离子负载量很低 | 大规模制备有独特优势 |
1 | Abbasi R, Setzler B P, Lin S S, et al. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers[J]. Advanced Materials, 2019, 31(31): 1805876. |
2 | Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 2010, 36(3): 307-326. |
52 | Wan L, Xu Z A, Wang P C, et al. H2SO4-doped polybenzimidazole membranes for hydrogen production with acid-alkaline amphoteric water electrolysis[J]. Journal of Membrane Science, 2021, 618: 118642. |
53 | Oener S Z, Foster M J, Boettcher S W. Accelerating water dissociation in bipolar membranes and for electrocatalysis[J]. Science, 2020, 369(6507): 1099-1103. |
3 | Zhao Z P, Chen C L, Liu Z Y, et al. Pt-based nanocrystal for electrocatalytic oxygen reduction[J]. Advanced Materials, 2019, 31(31): 1808115. |
4 | Goñi-Urtiaga A, Presvytes D, Scott K. Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: review[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3358-3372. |
54 | Mayerhöfer B, McLaughlin D, Böhm T, et al. Bipolar membrane electrode assemblies for water electrolysis[J]. ACS Applied Energy Materials, 2020, 3(10): 9635-9644. |
55 | Pletcher D, Li X H. Prospects for alkaline zero gap water electrolysers for hydrogen production[J]. International Journal of Hydrogen Energy, 2011, 36(23): 15089-15104. |
5 | Ganci F, Lombardo S, Sunseri C, et al. Nanostructured electrodes for hydrogen production in alkaline electrolyzer[J]. Renewable Energy, 2018, 123: 117-124. |
6 | Tang C, Wang H F, Zhang Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis[J]. Accounts of Chemical Research, 2018, 51(4): 881-889. |
56 | Phillips R, Dunnill C W. Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas[J]. RSC Advances, 2016, 6(102): 100643-100651. |
57 | Wang G L, Zou L L, Huang Q H, et al. Multidimensional nanostructured membrane electrode assemblies for proton exchange membrane fuel cell applications[J]. Journal of Materials Chemistry A, 2019, 7(16): 9447-9477. |
7 | Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry, 2017, 1: 3. |
8 | Mallouk T E. Divide and conquer[J]. Nature Chemistry, 2013, 5(5): 362-363. |
9 | Yang H Y, Driess M, Menezes P W. Self-supported electrocatalysts for practical water electrolysis [J]. Advanced Energy Materials, 2021, 11(39): 2170153. |
58 | Shangguan Z X, Li B, Ming P W, et al. Understanding the functions and modifications of interfaces in membrane electrode assemblies of proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2021, 9(27): 15111-15139. |
59 | Park Y S, Lee J H, Jang M J, et al. Co3S4 nanosheets on Ni foam via electrodeposition with sulfurization as highly active electrocatalysts for anion exchange membrane electrolyzer[J]. International Journal of Hydrogen Energy, 2020, 45(1): 36-45. |
60 | Pham C V, Bühler M, Knöppel J, et al. IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electrolyzers[J]. Applied Catalysis B: Environmental, 2020, 269: 118762. |
61 | Sun H M, Yan Z H, Liu F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(3): 1806326. |
62 | Oh J H, Han G H, Kim H, et al. Activity and stability of Ir-based gas diffusion electrode for proton exchange membrane water electrolyzer[J]. Chemical Engineering Journal, 2021, 420: 127696. |
63 | Lee J, Jung H, Park Y S, et al. Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer[J]. Chemical Engineering Journal, 2021, 420: 127670. |
64 | Kim H, Kim J, Kim J, et al. Dendritic gold-supported iridium/iridium oxide ultra-low loading electrodes for high-performance proton exchange membrane water electrolyzer[J]. Applied Catalysis B: Environmental, 2021, 283: 119596. |
65 | Park Y S, Yang J C, Lee J, et al. Superior performance of anion exchange membrane water electrolyzer: ensemble of producing oxygen vacancies and controlling mass transfer resistance[J]. Applied Catalysis B: Environmental, 2020, 278: 119276. |
66 | Chen P Z, Hu X L. High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts[J]. Advanced Energy Materials, 2020, 10(39): 2002285. |
10 | Ma T Y, Dai S, Qiao S Z. Self-supported electrocatalysts for advanced energy conversion processes[J]. Materials Today, 2016, 19(5): 265-273. |
11 | Miao J, Xiao F X, Yang H B, et al. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte[J]. Science Advances, 2015, 1(7): e1500259. |
67 | Lagarteira T, Han F, Morawietz T, et al. Highly active screen-printed IrTi4O7 anodes for proton exchange membrane electrolyzers[J]. International Journal of Hydrogen Energy, 2018, 43(35): 16824-16833. |
68 | Feng Q, Wang Q, Zhang Z, et al. Highly active and stable ruthenate pyrochlore for enhanced oxygen evolution reaction in acidic medium electrolysis[J]. Applied Catalysis B: Environmental, 2019, 244: 494-501. |
69 | Wang X Y, Shao Z G, Li G F, et al. A cocrystallized catalyst-coated membrane with high performance for solid polymer electrolyte water electrolysis[J]. Journal of Power Sources, 2013, 240: 525-529. |
70 | Ghadge S D, Patel P P, Datta M K, et al. First report of vertically aligned (Sn, Ir)O2:F solid solution nanotubes: highly efficient and robust oxygen evolution electrocatalysts for proton exchange membrane based water electrolysis[J]. Journal of Power Sources, 2018, 392: 139-149. |
71 | Zeng Y C, Guo X Q, Shao Z G, et al. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis[J]. Journal of Power Sources, 2017, 342: 947-955. |
72 | Zeng Y C, Zhang H J, Wang Z Q, et al. Nano-engineering of a 3D-ordered membrane electrode assembly with ultrathin Pt skin on open-walled PdCo nanotube arrays for fuel cells[J]. Journal of Materials Chemistry A, 2018, 6(15): 6521-6533. |
73 | Kim J C, Kim J, Park J C, et al. Ru2P nanofibers for high-performance anion exchange membrane water electrolyzer[J]. Chemical Engineering Journal, 2021, 420: 130491. |
74 | Zeng L, Zhao T S, Zhang R H, et al. NiCo2O4 nanowires@MnOx nanoflakes supported on stainless steel mesh with superior electrocatalytic performance for anion exchange membrane water splitting[J]. Electrochemistry Communications, 2018, 87: 66-70. |
75 | Jeon S S, Lim J, Kang P W, et al. Design principles of NiFe-layered double hydroxide anode catalysts for anion exchange membrane water electrolyzers[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37179-37186. |
12 | Wang X G, Kolen'Ko Y V, Liu L F. Direct solvothermal phosphorization of nickel foam to fabricate integrated Ni2P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution[J]. Chemical Communications, 2015, 51(31): 6738-6741. |
13 | Li W, Gao X F, Xiong D H, et al. Hydrothermal synthesis of monolithic Co3Se4 nanowire electrodes for oxygen evolution and overall water splitting with high efficiency and extraordinary catalytic stability[J]. Advanced Energy Materials, 2017, 7(17): 1602579. |
14 | Zhang N, Gan S Y, Wu T S, et al. Growth control of MoS2 nanosheets on carbon cloth for maximum active edges exposed: an excellent hydrogen evolution 3D cathode[J]. ACS Applied Materials & Interfaces, 2015, 7(22): 12193-12202. |
15 | Guo W W, Kim J, Kim H, et al. Cu-Co-P electrodeposited on carbon paper as an efficient electrocatalyst for hydrogen evolution reaction in anion exchange membrane water electrolyzers[J]. International Journal of Hydrogen Energy, 2021, 46(38): 19789-19801. |
16 | Wang Y H, Zhang G X, Xu W W, et al. A 3D nanoporous Ni-Mo electrocatalyst with negligible overpotential for alkaline hydrogen evolution[J]. ChemElectroChem, 2014, 1(7): 1138-1144. |
17 | Bai N N, Li Q, Mao D Y, et al. One-step electrodeposition of Co/CoP film on Ni foam for efficient hydrogen evolution in alkaline solution[J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29400-29407. |
18 | Xiao J, Lv Q, Zhang Y, et al. One-step synthesis of nickel phosphide nanowire array supported on nickel foam with enhanced electrocatalytic water splitting performance[J]. RSC Advances, 2016, 6(109): 107859-107864. |
19 | Sun J Y, Ren M Q, Yu L, et al. Highly efficient hydrogen evolution from a mesoporous hybrid of nickel phosphide nanoparticles anchored on cobalt phosphosulfide/phosphide nanosheet arrays[J]. Small, 2019, 15(6): 1804272. |
20 | Wang P C, Wan L, Lin Y Q, et al. MoS2 supported CoS2 on carbon cloth as a high-performance electrode for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16566-16574. |
21 | Wang P C, Lin Y Q, Wan L, et al. Core-shell Cu@CoP as highly efficient and durable bifunctional electrodes for electrochemical water splitting[J]. Energy & Fuels, 2020, 34(8): 10276-10281. |
22 | Hou Y, Lohe M R, Zhang J, et al. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting[J]. Energy & Environmental Science, 2016, 9(2): 478-483. |
23 | Liu X P, Gong M X, Xiao D D, et al. Turning waste into treasure: regulating the oxygen corrosion on Fe foam for efficient electrocatalysis[J]. Small, 2020, 16(24): 2000663. |
24 | Shao B, Pang W, Tan X Q, et al. Rapid growth of amorphous cobalt-iron oxyhydroxide nanosheet arrays onto iron foam: highly efficient and low-cost catalysts for oxygen evolution[J]. Journal of Electroanalytical Chemistry, 2020, 856: 113621. |
25 | Yuan J X, Cheng X D, Wang H Q, et al. A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution at ultra-high current densities[J]. Nano-Micro Letters, 2020, 12(1): 1-12. |
26 | Lu X Y, Zhao C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nature Communications, 2015, 6: 6616. |
27 | Zhang W, Qi J, Liu K Q, et al. A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation[J]. Advanced Energy Materials, 2016, 6(12): 1502489. |
28 | Wang P C, Lin Y Q, Wan L, et al. Autologous growth of Fe-doped Ni(OH)2 nanosheets with low overpotential for oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6416-6424. |
29 | Wang P C, Wan L, Lin Y Q, et al. NiFe hydroxide supported on hierarchically porous nickel mesh as a high-performance bifunctional electrocatalyst for water splitting at large current density[J]. ChemSusChem, 2019, 12(17): 4038-4045. |
30 | Cano Z P, Park M G, Lee D U, et al. New interpretation of the performance of nickel-based air electrodes for rechargeable zinc-air batteries[J]. The Journal of Physical Chemistry C, 2018, 122(35): 20153-20166. |
31 | Yang Y Q, Zhang K, Lin H L, et al. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting[J]. ACS Catalysis, 2017, 7(4): 2357-2366. |
76 | Lim A, Kim J, Lee H J, et al. Low-loading IrO2 supported on Pt for catalysis of PEM water electrolysis and regenerative fuel cells[J]. Applied Catalysis B: Environmental, 2020, 272: 118955. |
77 | Jiang G, Yu H M, Li Y H, et al. Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15073-15082. |
32 | Zhang J, Wang T, Pohl D, et al. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity[J]. Angewandte Chemie International Edition, 2016, 55(23): 6702-6707. |
33 | Cao J M, Zhou J, Zhang Y F, et al. Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 1752-1760. |
34 | Zhang H J, Li X P, Hähnel A, et al. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting[J]. Advanced Functional Materials, 2018, 28(14): 1706847. |
35 | Yang Z, Lin Y, Jiao F X, et al. In situ growth of 3D walnut-like nano-architecture Mo-Ni2P@NiFe LDH/NF arrays for synergistically enhanced overall water splitting[J]. Journal of Energy Chemistry, 2020, 49: 189-197. |
36 | Mai W S, Cui Q, Zhang Z Q, et al. CoMoP/NiFe-layered double-hydroxide hierarchical nanosheet arrays standing on Ni foam for efficient overall water splitting[J]. ACS Applied Energy Materials, 2020, 3(8): 8075-8085. |
37 | Park J E, Kang S Y, Oh S H, et al. High-performance anion-exchange membrane water electrolysis[J]. Electrochimica Acta, 2019, 295: 99-106. |
38 | Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1690-1704. |
39 | You W, Noonan K J T, Coates G W. Alkaline-stable anion exchange membranes: a review of synthetic approaches[J]. Progress in Polymer Science, 2020, 100: 101177. |
40 | 徐子昂, 万磊, 刘凯, 等. 高稳定碱性离子膜分子设计研究进展[J]. 化工学报, 2021, 72(8): 3891-3906. |
Xu Z A, Wan L, Liu K, et al. Recent progress of molecular design for highly stable alkaline anion exchange membranes[J]. CIESC Journal, 2021, 72(8): 3891-3906. | |
78 | Chi J, Yu H, Qin B, et al. Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 464-471. |
41 | Cha M S, Park J E, Kim S, et al. Poly(carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices[J]. Energy & Environmental Science, 2020, 13(10): 3633-3645. |
42 | Soni R, Miyanishi S, Kuroki H, et al. Pure water solid alkaline water electrolyzer using fully aromatic and high-molecular-weight poly(fluorene-alt-tetrafluorophenylene)-trimethyl ammonium anion exchange membranes and ionomers[J]. ACS Applied Energy Materials, 2021, 4(2): 1053-1058. |
43 | Fan J T, Willdorf-Cohen S, Schibli E M, et al. Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability[J]. Nature Communications, 2019, 10: 2306. |
44 | Lu W T, Yang Z Z, Huang H, et al. Piperidinium-functionalized poly(vinylbenzyl chloride) cross-linked by polybenzimidazole as an anion exchange membrane with a continuous ionic transport pathway[J]. Industrial & Engineering Chemistry Research, 2020, 59(48): 21077-21087. |
45 | Li D G, Park E J, Zhu W L, et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers[J]. Nature Energy, 2020, 5(5): 378-385. |
46 | Miller H A, Bouzek K, Hnat J, et al. Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions[J]. Sustainable Energy & Fuels, 2020, 4(5): 2114-2133. |
47 | Shi L, Rossi R, Son M, et al. Using reverse osmosis membranes to control ion transport during water electrolysis[J]. Energy & Environmental Science, 2020, 13(9): 3138-3148. |
48 | Diaz L A, Coppola R E, Abuin G C, et al. Alkali-doped polyvinyl alcohol-polybenzimidazole membranes for alkaline water electrolysis[J]. Journal of Membrane Science, 2017, 535: 45-55. |
49 | Wan L, Xu Z A, Wang B G. Green preparation of highly alkali-resistant PTFE composite membranes for advanced alkaline water electrolysis[J]. Chemical Engineering Journal, 2021, 426: 131340. |
50 | Yan Y, Xia B Y, Zhao B, et al. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. Journal of Materials Chemistry A, 2016, 4(45): 17587-17603. |
51 | Lei Q, Wang B G, Wang P C, et al. Hydrogen generation with acid/alkaline amphoteric water electrolysis[J]. Journal of Energy Chemistry, 2019, 38: 162-169. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[5] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[6] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[7] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[8] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[9] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[10] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[11] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[12] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[13] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[14] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[15] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||