CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 5975-6001.DOI: 10.11949/0438-1157.20211085
• Reviews and monographs • Previous Articles Next Articles
Xiaoming SUN(),Qihao SHA,Chenwei WANG,Daojin ZHOU()
Received:
2021-08-02
Revised:
2021-10-14
Online:
2021-12-22
Published:
2021-12-05
Contact:
Xiaoming SUN,Daojin ZHOU
通讯作者:
孙晓明,周道金
作者简介:
孙晓明(1976—),男,博士,教授,基金资助:
CLC Number:
Xiaoming SUN, Qihao SHA, Chenwei WANG, Daojin ZHOU. Application of copper-based catalysts for hydrogen production in methanol steam reforming[J]. CIESC Journal, 2021, 72(12): 5975-6001.
孙晓明, 沙琪昊, 王陈伟, 周道金. 用于甲醇重整制氢的铜基催化剂研究进展[J]. 化工学报, 2021, 72(12): 5975-6001.
①在纯O2 400℃条件下煅烧1 h后再进行反应;②在纯H2 300℃条件下预还原1 h后再进行反应;③在纯H2 400℃条件下预还原1 h后再进行反应。
(25) (a) 基于Jiang等、Peppley等、Iwasa等研究的甲醇水蒸气重整催化循环,包括不同种类的反应性表面位点 A ()和B ()[39];(b) 经由CH2O中间体的MSR反应网络[44];(c) 还原的CuO-CeO2在MSR反应中的原位红外谱图[45];(d) 还原的CuO-CeO2-I在MSR反应中的原位红外谱图[45]
null①在纯O2 400℃条件下煅烧1 h后再进行反应;②在纯H2 300℃条件下预还原1 h后再进行反应;③在纯H2 400℃条件下预还原1 h后再进行反应。
35 | Jeong H, Kim K I, Kim T H, et al. Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst[J]. Journal of Power Sources, 2006, 159(2): 1296-1299. |
36 | Peppley B A, Amphlett J C, Kearns L M, et al. Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts (Part 2): A comprehensive kinetic model[J]. Applied Catalysis A: General, 1999, 179(1/2): 31-49. |
37 | Breen J P, Ross J R H. Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts[J]. Catalysis Today, 1999, 51(3/4): 521-533. |
38 | Shishido T, Yamamoto Y, Morioka H, et al. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: steam reforming and oxidative steam reforming[J]. Journal of Molecular Catalysis A: Chemical, 2007, 268(1/2): 185-194. |
39 | Frank B, Jentoft F C, Soerijanto H, et al. Steam reforming of methanol over copper-containing catalysts: influence of support material on microkinetics[J]. Journal of Catalysis, 2007, 246(1): 177-192. |
40 | Zhang R, Sun Y H, Peng S Y. In situ FTIR studies of methanol adsorption and dehydrogenation over Cu/SiO2 catalyst[J]. Fuel, 2002, 81(11/12): 1619-1624. |
41 | Lin S, Johnson R S, Smith G K, et al. Pathways for methanol steam reforming involving adsorbed formaldehyde and hydroxyl intermediates on Cu(111): density functional theory studies[J]. Physical Chemistry Chemical Physics, 2011, 13(20): 9622-9631. |
42 | Papavasiliou J, Avgouropoulos G, Ioannides T. Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts[J]. Applied Catalysis B: Environmental, 2009, 88(3/4): 490-496. |
43 | Gu X K, Li W X. First-principles study on the origin of the different selectivities for methanol steam reforming on Cu(111) and Pd(111)[J]. The Journal of Physical Chemistry C, 2010, 114(49): 21539-21547. |
44 | Wang S S, Gu X K, Su H Y, et al. First-principles and microkinetic simulation studies of the structure sensitivity of Cu catalyst for methanol steam reforming[J]. The Journal of Physical Chemistry C, 2018, 122(20): 10811-10819. |
45 | Chen Y, Li S T, Lv S, et al. A novel synthetic route for MOF-derived CuO-CeO2 catalyst with remarkable methanol steam reforming performance[J]. Catalysis Communications, 2021, 149: 106215. |
46 | Wachs I E, Madix R J. The oxidation of H2CO on a copper(110) surface[J]. Surface Science, 1979, 84(2): 375-386. |
1 | Cai W J, Borlace S, Lengaigne M, et al. Increasing frequency of extreme El Niño events due to greenhouse warming[J]. Nature Climate Change, 2014, 4(2): 111-116. |
2 | Massondelmotte V. Towards the IPCC special report on global warming of 1.5℃[C]//Egu General Assembly Conference, Austria, 2017. |
3 | Tong D, Zhang Q, Zheng Y X, et al. Committed emissions from existing energy infrastructure jeopardize 1.5℃ climate target[J]. Nature, 2019, 572(7769): 373-377. |
4 | Bednar J, Obersteiner M, Baklanov A, et al. Operationalizing the net-negative carbon economy[J]. Nature, 2021, 596(7872): 377-383. |
5 | Jacobson M Z, Colella W G, Golden D M. Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science, 2005, 308(5730): 1901-1905. |
6 | Wulf C, Reuß M, Grube T, et al. Life cycle assessment of hydrogen transport and distribution options[J]. Journal of Cleaner Production, 2018, 199: 431-443. |
7 | Kawamura Y, Ogura N, Igarashi A. Hydrogen production by methanol steam reforming using microreactor[J]. Journal of the Japan Petroleum Institute, 2013, 56(5): 288-297. |
8 | Iulianelli A, Ribeirinha P, Mendes A, et al. Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review[J]. Renewable and Sustainable Energy Reviews,2014, 29: 355-368. |
9 | Shih C F, Zhang T, Li J H, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10): 1925-1949. |
10 | Frei M S, Mondelli C, Short M I M, et al. Methanol as a hydrogen carrier: kinetic and thermodynamic drivers for its CO2-based synthesis and reforming over heterogeneous catalysts[J]. ChemSusChem, 2020, 13(23):6330-6337. |
11 | Wu C Y, Lin L L, Liu J J, et al. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation[J]. Nature Communications, 2020, 11:5767. |
12 | 舟丹.“液体阳光”是实现低碳能源的主要途径[J]. 中外能源, 2020,25(7):24. |
Zhou D. “Liquid sunlight” is the main way to realize low-carbon energy[J]. Sino-Globa Energy,2020,25(7):24. | |
13 | Lin L L, Zhou W, Gao R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544(7648): 80-83. |
14 | Sun Z, Sun Z Q. Hydrogen generation from methanol reforming for fuel cell applications: a review[J]. Journal of Central South University, 2020, 27(4): 1074-1103. |
15 | 陆晓如.李灿:太阳燃料值得期待[J]. 中国石油石化, 2019(7): 17-19, 16. |
Lu X R.Li Can:solar fuel worth looking forward to[J]. China Petrochem, 2019(7): 17-19, 16. | |
16 | 王芳.用“液态阳光”将风电存起来、送出去[J]. 风能,2021(1): 24-25. |
Wang F. Use “liquid sunlight” to store wind power and send it out[J]. Wind Energy,2021(1): 24-25. | |
17 | Yong S T, Ooi C W, Chai S P, et al. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes[J]. International Journal of Hydrogen Energy, 2013, 38(22): 9541-9552. |
18 | Xu X H, Shuai K P, Xu B. Review on copper and palladium based catalysts for methanol steam reforming to produce hydrogen[J]. Catalysts, 2017, 7(6): 183. |
19 | Takezawa N, Iwasa N. Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group Ⅷ metals[J]. Catalysis Today, 1997, 36(1):45-56. |
20 | Iwasa N, Takezawa N. New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol[J]. Topics in Catalysis, 2003, 22(3/4): 215-224. |
21 | Iwasa N, Mayanagi T, Ogawa N, et al. New catalytic functions of Pd-Zn, Pd-Ga, Pd-In, Pt-Zn, Pt-Ga and Pt-In alloys in the conversions of methanol[J]. Catalysis Letters, 1998, 54(3): 119-123. |
22 | Iwasa N, Masuda S, Ogawa N, et al. Steam reforming of methanol over Pd/ZnO: effect of the formation of PdZn alloys upon the reaction[J]. Applied Catalysis A: General, 1995, 125(1): 145-157. |
23 | Hong X L, Ren S Z. Selective hydrogen production from methanol oxidative steam reforming over Zn-Cr catalysts with or without Cu loading[J]. International Journal of Hydrogen Energy, 2008, 33(2): 700-708. |
24 | Cao W Q, Chen G W, Li S L, et al. Methanol-steam reforming over a ZnO-Cr2O3/CeO2-ZrO2/Al2O3 catalyst[J]. Chemical Engineering Journal, 2006, 119(2/3): 93-98. |
25 | Sá S, Silva H, Brandão L, et al. Catalysts for methanol steam reforming—a review[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 43-57. |
26 | Iwasa N, Kudo S, Takahashi H, et al. Highly selective supported Pd catalysts for steam reforming of methanol[J]. Catalysis Letters, 1993, 19(2/3): 211-216. |
27 | Shokrani R, Haghighi M, Jodeiri N, et al. Fuel cell grade hydrogen production via methanol steam reforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized via urea-nitrates combustion method[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13141-13155. |
28 | Agrell J, Birgersson H, Boutonnet M, et al. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3[J]. Journal of Catalysis, 2003, 219(2): 389-403. |
29 | Santacesaria E, Carrá S. Kinetics of catalytic steam reforming of methanol in a CSTR reactor[J]. Applied Catalysis, 1983, 5(3): 345-358. |
30 | Pour V, Bartoň J, Benda A. Kinetics of catalyzed reaction of methanol with water vapour[J]. Collection of Czechoslovak Chemical Communications, 1975, 40(10): 2923-2934. |
31 | Lwin Y, Daud W R W, Mohamad A B, et al. Hydrogen production from steam-methanol reforming: thermodynamic analysis[J]. International Journal of Hydrogen Energy, 2000, 25(1): 47-53. |
32 | Amphlett J C, Evans M J, Mann R F, et al. Hydrogen production by the catalytic steam reforming of methanol (Part 2): Kinetics of methanol decomposition using girdler G66B catalyst[J]. The Canadian Journal of Chemical Engineering, 2010, 63(4): 605-611. |
33 | Takahashi K, Takezawa N, Kobayashi H. The mechanism of steam reforming of methanol over a copper-silica catalyst[J]. Applied Catalysis, 1982, 2(6): 363-366. |
34 | Jiang C J, Trimm D L, Wainwright M S, et al. Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst[J]. Applied Catalysis A: General, 1993, 97(2): 145-158. |
47 | McCabe R W, DiMaggio C L, Madix R J. Adsorption and reactions of acetaldehyde on Pt(S)-[6(111)× (100)][J]. The Journal of Physical Chemistry, 1985, 89(5): 854-861. |
48 | Shekhar R, Barteau M A. Structure sensitivity of alcohol reactions on (110) and (111) palladium surfaces[J]. Catalysis Letters, 1995, 31(2/3): 221-237. |
49 | Davis J L, Barteau M A. Spectroscopic identification of alkoxide, aldehyde, and acyl intermediates in alcohol decomposition on Pd(111)[J]. Surface Science, 1990, 235(2/3): 235-248. |
50 | Herdem M S, Sinaki M Y, Farhad S, et al. An overview of the methanol reforming process: comparison of fuels, catalysts, reformers, and systems[J]. International Journal of Energy Research, 2019, 43(10): 5076-5105. |
51 | Ranjekar A M, Yadav G D. Steam reforming of methanol for hydrogen production: a critical analysis of catalysis, processes, and scope[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 89-113. |
52 | Hansen P L. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals[J]. Science, 2002, 295(5562): 2053-2055. |
53 | Wang S S, Su H Y, Gu X K, et al. Differentiating intrinsic reactivity of copper, copper-zinc alloy, and copper/zinc oxide interface for methanol steam reforming by first-principles theory[J]. The Journal of Physical Chemistry C, 2017, 121(39): 21553-21559. |
54 | Yang H H, Chen Y Y, Cui X J, et al. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation[J]. Angewandte Chemie International Edition, 2018, 57(7): 1836-1840. |
55 | Das D, Llorca J, Dominguez M, et al. Methanol steam reforming behavior of copper impregnated over CeO2-ZrO2 derived from a surfactant assisted coprecipitation route[J]. International Journal of Hydrogen Energy, 2015, 40(33): 10463-10479. |
56 | Turco M, Bagnasco G, Costantino U, et al. Production of hydrogen from oxidative steam reforming of methanol (I): Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor[J]. Journal of Catalysis, 2004, 228(1): 43-55. |
57 | Oguchi H, Kanai H, Utani K, et al. Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts[J]. Applied Catalysis A: General, 2005, 293: 64-70. |
58 | Günter M M, Ressler T, Bems B, et al. Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis[J]. Catalysis Letters, 2001, 71(1/2): 37-44. |
59 | Klier K. Methanol synthesis[M]//Advances in Catalysis. Amsterdam: Elsevier, 1982: 243-313. |
60 | Chinchen G C, Waugh K C, Whan D A. The activity and state of the copper surface in methanol synthesis catalysts[J]. Applied Catalysis, 1986, 25(1/2): 101-107. |
61 | Burch R, Golunski S E, Spencer M S. The role of copper and zinc oxide in methanol synthesis catalysts[J]. Journal of the Chemical Society, Faraday Transactions, 1990, 86(15): 2683. |
62 | Spencer M S. The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction[J]. Topics in Catalysis, 1999, 8(3/4): 259-266. |
63 | Nakamura J, Choi Y, Fujitani T. On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts[J]. Topics in Catalysis, 2003, 22(3/4): 277-285. |
64 | Topsøe N Y, Topsøe H. On the nature of surface structural changes in Cu/ZnO methanol synthesis catalysts[J]. Topics in Catalysis, 1999, 8(3/4): 267-270. |
65 | Grunwaldt J D, Molenbroek A M, Topsøe N Y, et al. In situ investigations of structural changes in Cu/ZnO catalysts[J]. Journal of Catalysis, 2000, 194(2): 452-460. |
66 | Kasatkin I, Kurr P, Kniep B, et al. Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis[J]. Angewandte Chemie International Edition, 2007, 46(38): 7324-7327. |
67 | Behrens M, Studt F, Kasatkin I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083): 893-897. |
68 | Zeng S H, Zhang W L, Guo S L, et al. Inverse rod-like CeO2 supported on CuO prepared by hydrothermal method for preferential oxidation of carbon monoxide[J]. Catalysis Communications, 2012, 23: 62-66. |
69 | Yang S Q, Zhou F, Liu Y J, et al. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7252-7261. |
70 | Yao X J, Gao F, Yu Q, et al. NO reduction by CO over CuO-CeO2 catalysts: effect of preparation methods[J]. Catalysis Science & Technology, 2013, 3(5): 1355-1366. |
71 | Li G S, Li L P, Zheng J. Understanding the defect chemistry of oxide nanoparticles for creating new functionalities: a critical review[J]. Science China Chemistry, 2011, 54(6): 876-886. |
72 | Varmazyari M, Khani Y, Bahadoran F, et al. Hydrogen production employing Cu(BDC) metal-organic framework support in methanol steam reforming process within monolithic micro-reactors[J]. International Journal of Hydrogen Energy, 2021, 46(1): 565-580. |
73 | Baneshi J, Haghighi M, Jodeiri N, et al. Homogeneous precipitation synthesis of CuO-ZrO2-CeO2-Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications[J]. Energy Conversion and Management, 2014, 87: 928-937. |
74 | Qiao W J, Yang S Q, Zhang L, et al. Performance of Cu-Ce/M-Al (M = Mg, Ni, Co, Zn) hydrotalcite derived catalysts for hydrogen production from methanol steam reforming[J]. International Journal of Energy Research, 2021, 45(9): 12773-12783. |
75 | Ribeirinha P, Mateos-Pedrero C, Boaventura M, et al. CuO/ZnO/Ga2O3 catalyst for low temperature MSR reaction: synthesis, characterization and kinetic model[J]. Applied Catalysis B: Environmental, 2018, 221: 371-379. |
76 | Ruano D, Cored J, Azenha C, et al. Dynamic structure and subsurface oxygen formation of a working copper catalyst under methanol steam reforming conditions: an in situ time-resolved spectroscopic study[J]. ACS Catalysis, 2019, 9(4): 2922-2930. |
77 | Tong W Y, West A, Cheung K, et al. Dramatic effects of gallium promotion on methanol steam reforming Cu-ZnO catalyst for hydrogen production: formation of 5 Å copper clusters from Cu-ZnGaOx[J]. ACS Catalysis, 2013, 3(6): 1231-1244. |
78 | Chang C C, Wang J W, Chang C T, et al. Effect of ZrO2 on steam reforming of methanol over CuO/ZnO/ZrO2/Al2O3 catalysts[J]. Chemical Engineering Journal, 2012, 192: 350-356. |
79 | Matsumura Y. Stabilization of Cu/ZnO/ZrO2 catalyst for methanol steam reforming to hydrogen by coprecipitation on zirconia support[J]. Journal of Power Sources, 2013, 238: 109-116. |
80 | Patel S, Pant K K. Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol[J]. Journal of Porous Materials, 2006, 13(3/4): 373-378. |
81 | Mateos-Pedrero C, Azenha C, Pacheco Tanaka D A, et al. The influence of the support composition on the physicochemical and catalytic properties of Cu catalysts supported on zirconia-alumina for methanol steam reforming[J]. Applied Catalysis B: Environmental, 2020, 277:119243. |
82 | Sanches S G, Flores J H, Da Silva M I P. Cu/ZnO and Cu/ZnO/ZrO2 catalysts used for methanol steam reforming[J]. Molecular Catalysis, 2018, 454: 55-62. |
83 | Ploner K, Schlicker L, Gili A, et al. Reactive metal-support interaction in the Cu-In2O3 system: intermetallic compound formation and its consequences for CO2-selective methanol steam reforming[J]. Science and Technology of Advanced Materials, 2019, 20(1): 356-366. |
84 | Lu P J, Cai F F, Zhang J, et al. Hydrogen production from methanol steam reforming over B-modified CuZnAlOx catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 791-798. |
85 | Kuo M T, Chen Y Y, Hung W Y, et al. Synthesis of mesoporous CuFe/silicates catalyst for methanol steam reforming[J]. International Journal of Hydrogen Energy, 2019, 44(28): 14416-14423. |
86 | Khani Y, Bahadoran F, Safari N, et al. Hydrogen production from steam reforming of methanol over Cu-based catalysts: the behavior of ZnxLaxAl1-xO4 and ZnO/La2O3/Al2O3 lined on cordierite monolith reactors[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11824-11837. |
87 | Hwang B Y, Sakthinathan S, Chiu T W. Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr1-xFexO2 (x=0-1) nanopowders catalyst[J]. International Journal of Hydrogen Energy, 2019, 44(5): 2848-2856. |
88 | Shen J P, Song C S. Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells[J]. Catalysis Today, 2002, 77(1/2): 89-98. |
89 | Hughes R. Deactivation of Catalysts[M].London Orlando: Academic Press, 1984. |
90 | Kurtz M, Wilmer H, Genger T, et al. Deactivation of supported copper catalysts for methanol synthesis[J]. Catalysis Letters, 2003, 86(1/2/3): 77-80. |
91 | Zhang X R, Shi P F. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2003, 194(1/2): 99-105. |
92 | Choi Y, Stenger H G. Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst[J]. Applied Catalysis B: Environmental, 2002, 38(4): 259-269. |
93 | Thurgood C P, Amphlett J C, Mann R F, et al. Deactivation of Cu/ZnO/Al2O3 catalyst: evolution of site concentrations with time[J]. Topics in Catalysis, 2003, 22(3/4): 253-259. |
94 | Liu Y Y, Hayakawa T, Suzuki K, et al. Highly active copper/ceria catalysts for steam reforming of methanol[J]. Applied Catalysis A: General, 2002, 223(1/2): 137-145. |
95 | Twigg M V, Spencer M S. Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis[J]. Topics in Catalysis, 2003, 22(3/4): 191-203. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[3] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[4] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[5] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[6] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[7] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[8] | Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081. |
[9] | Yue SONG, Qicheng ZHANG, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Synthesis of MoS2-based single atom catalyst and its application in electrocatalysis [J]. CIESC Journal, 2023, 74(2): 535-545. |
[10] | Huibo MENG, Tong MENG, Yanfang YU, Zongyong WANG, Jianhua WU. Turbulent heat transfer and mixing enhancement characteristics in Ross LPD static mixer [J]. CIESC Journal, 2022, 73(8): 3541-3552. |
[11] | Zhenhe XU, Hongjiang LI, Yu GAO, Zheng LI, Hanyan ZHANG, Baotong XU, Fu DING, Yaguang SUN. Preparation of In2O3/Ag:ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis [J]. CIESC Journal, 2022, 73(8): 3625-3635. |
[12] | Xingang QI, Libo LU, Yunan CHEN, Zhiwei GE, Liejin GUO. Review of black liquor supercritical water gasification for hydrogen production with high value-added chemicals recovery [J]. CIESC Journal, 2022, 73(8): 3338-3354. |
[13] | Xiaoya LIU, Jinchao WANG, Ying LIU, Jinghuan MA. Progress in modified preparation and catalytic mechanism of nanocatalysts for hydrogen production from hydrous hydrazine [J]. CIESC Journal, 2022, 73(7): 2819-2834. |
[14] | Pei WANG, Rongkuo WEI. Thermal-mass nonequilibrium model for water splitting hydrogen production by solar thermochemical cycle of porous cerium oxide [J]. CIESC Journal, 2022, 73(7): 2885-2894. |
[15] | Yu QIAN, Yaoxi CHEN, Xiaofei SHI, Siyu YANG. Big data analysis of solar energy fluctuation characteristics and integration of wind-photovoltaic to hydrogen system [J]. CIESC Journal, 2022, 73(5): 2101-2110. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 362
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 647
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||