CIESC Journal ›› 2022, Vol. 73 ›› Issue (5): 2206-2221.DOI: 10.11949/0438-1157.20211779
• Energy and environmental engineering • Previous Articles Next Articles
Min WANG1(),Jinlan CHENG1(),Xin LI1,2,Jingjing LU1,Chongxin YIN1,3,Hongqi DAI1
Received:
2021-12-17
Revised:
2022-04-01
Online:
2022-05-24
Published:
2022-05-05
Contact:
Jinlan CHENG
王敏1(),程金兰1(),李鑫1,2,陆晶晶1,尹崇鑫1,3,戴红旗1
通讯作者:
程金兰
作者简介:
王敏(1996—),女,硕士研究生,基金资助:
CLC Number:
Min WANG, Jinlan CHENG, Xin LI, Jingjing LU, Chongxin YIN, Hongqi DAI. Delignification mechanism study of acid hydrotropes[J]. CIESC Journal, 2022, 73(5): 2206-2221.
王敏, 程金兰, 李鑫, 陆晶晶, 尹崇鑫, 戴红旗. 酸性助水溶剂脱除木质素机理分析[J]. 化工学报, 2022, 73(5): 2206-2221.
Add to citation manager EndNote|Ris|BibTeX
水平 | 质量分数/% | 反应温度/℃ | 反应时间/min |
---|---|---|---|
1 | 25 | 70 | 30 |
2 | 25 | 80 | 60 |
3 | 25 | 90 | 90 |
4 | 40 | 70 | 60 |
5 | 40 | 80 | 90 |
6 | 40 | 90 | 30 |
7 | 55 | 70 | 90 |
8 | 55 | 80 | 30 |
9 | 55 | 90 | 60 |
Table 1 TSA experiment factors design
水平 | 质量分数/% | 反应温度/℃ | 反应时间/min |
---|---|---|---|
1 | 25 | 70 | 30 |
2 | 25 | 80 | 60 |
3 | 25 | 90 | 90 |
4 | 40 | 70 | 60 |
5 | 40 | 80 | 90 |
6 | 40 | 90 | 30 |
7 | 55 | 70 | 90 |
8 | 55 | 80 | 30 |
9 | 55 | 90 | 60 |
水平 | 质量分数/% | 反应温度/℃ | 反应时间/min |
---|---|---|---|
1 | 40 | 100 | 60 |
2 | 40 | 120 | 120 |
3 | 40 | 140 | 180 |
4 | 55 | 100 | 120 |
5 | 55 | 120 | 180 |
6 | 55 | 140 | 60 |
7 | 70 | 100 | 180 |
8 | 70 | 120 | 60 |
9 | 70 | 140 | 120 |
Table 2 MA experiment factors design
水平 | 质量分数/% | 反应温度/℃ | 反应时间/min |
---|---|---|---|
1 | 40 | 100 | 60 |
2 | 40 | 120 | 120 |
3 | 40 | 140 | 180 |
4 | 55 | 100 | 120 |
5 | 55 | 120 | 180 |
6 | 55 | 140 | 60 |
7 | 70 | 100 | 180 |
8 | 70 | 120 | 60 |
9 | 70 | 140 | 120 |
化学成分 | 含量/% |
---|---|
灰分 | 0.3±0.01 |
苯醇抽提物 | 0.57±0.03 |
酸溶木质素 | 4.09±0.02 |
酸不溶木质素 | 22.89±0.1 |
葡聚糖 | 36.54±1.1 |
木聚糖 | 14.55±0.8 |
Table 3 Chemical composition of eucalyptus chip material
化学成分 | 含量/% |
---|---|
灰分 | 0.3±0.01 |
苯醇抽提物 | 0.57±0.03 |
酸溶木质素 | 4.09±0.02 |
酸不溶木质素 | 22.89±0.1 |
葡聚糖 | 36.54±1.1 |
木聚糖 | 14.55±0.8 |
样品编号 | 固体组分 | 液体组分 | |||||||
---|---|---|---|---|---|---|---|---|---|
灰分/% | 得率/% | 酸溶木质素/% | 酸不溶木质素/% | 木质素脱除率/% | 葡聚糖/% | 木聚糖/% | 木糖/(g/L) | ||
P25T70t30 | 0.34±0.02 | 93.59±0.20 | 4.72(96.08)±0.02 | 22.15(90.57)±0.27 | 9.43±1.22 | 41.42(99.17)±1.00 | 13.47(86.62)±0.33 | 1.70±0.05 | |
P40T70t60 | 0.25±0.00 | 72.56±0.18 | 4.47(83.09)±0.00 | 19.05(68.90)±0.59 | 31.30±0.20 | 43.78(96.50)±0.97 | 12.57(71.34)±0.99 | 2.68±0.04 | |
P25T80t60 | 0.24±0.04 | 80.02±0.20 | 3.56(78.35)±0.02 | 18.94(65.21)±0.30 | 33.79±0.39 | 42.42(98.86)±0.30 | 10.56(58.07)±0.78 | 4.67±0.02 | |
P55T80t30 | 0.17±0.00 | 75.49±0.04 | 3.08(54.94)±0.05 | 16.29(53.20)±0.68 | 47.80±1.03 | 46.59(99.54)±0.78 | 8.52(42.94)±0.88 | 5.45±0.03 | |
P55T70t90 | 0.09±0.00 | 73.36±0.15 | 2.55(45.89)±0.01 | 15.14(50.57)±0.79 | 47.43±1.08 | 56.49(102.89)±0.39 | 6.78(37.05)±0.90 | 6.78±0.02 | |
P40T90t30 | 0.06±0.00 | 70.97±0.13 | 2.08(29.76)±0.03 | 13.54(46.95)±0.20 | 55.05±1.09 | 58.39(100.90)±0.65 | 6.88(35.95)±0.20 | 10.07±0.03 | |
P40T80t90 | 0.08±0.1 | 69.38±0.07 | 1.56(18.92)±0.00 | 13.48(42.80)±0.01 | 57.37±0.98 | 60.30(105.48)±0.76 | 5.15(25.60)±0.44 | 13.92±0.06 | |
P25T90t90 | 0.09±0.03 | 63.73±0.07 | 1.01(8.58)±0.04 | 12.95(37.29)±0.30 | 62.91±0.79 | 59.61(102.34)±0.89 | 5.25(24.81)±0.77 | 14.78±0.08 | |
P55T90t60 | 0.06±0.02 | 58.50±0.20 | 0.53(7.59)±0.01 | 12.54(32.06)±1.49 | 67.94±0.90 | 72.14(98.73)±0.45 | 4.08(16.42)±0.02 | 15.08±0.10 | |
M40T100t60 | 0.31±0.01 | 91.63±0.19 | 4.89(96.28)±0.10 | 22.17(88.76)±0.67 | 11.24±0.76 | 46.77(94.49)±1.29 | 12.33(77.65)±1.08 | 1.89±0.01 | |
M55T100t120 | 0.28±0.04 | 74.50±0.03 | 4.38(83.56)±0.03 | 20.58(75.99)±0.40 | 24.01±1.02 | 56.59(95.59)±0.45 | 9.52(58.73)±0.99 | 7.50±0.02 | |
M70T120t60 | 0.23±0.00 | 72.24±0.16 | 3.68(59.27)±0.02 | 19.05(56.33)±0.30 | 43.67±1.07 | 59.00(93.72)±0.64 | 8.51(45.07)±0.97 | 12.03±0.01 | |
M40T120t120 | 0.18±0.05 | 71.01±0.16 | 3.04(51.57)±0.04 | 18.16(53.46)±0.99 | 46.54±1.11 | 49.10(95.43)±0.82 | 9.24(37.56)±0.76 | 13.92±0.04 | |
M55T140t60 | 0.19±0.00 | 67.98±0.18 | 2.74(49.04)±0.03 | 17.80(49.90)±0.39 | 50.10±0.20 | 62.52(95.61)±0.84 | 7.65(35.74)±0.56 | 15.20±0.02 | |
M70T100t180 | 0.02±0.01 | 65.60±0.09 | 2.03(47.22)±0.01 | 16.06(47.80)±1.01 | 52.20±0.49 | 56.66(93.97)±0.39 | 6.54(32.25)±0.88 | 15.98±0.07 | |
M55T120t180 | 0.05±0.01 | 63.81±0.19 | 1.78(35.07)±0.04 | 15.68(45.04)±0.20 | 54.96±0.59 | 66.73(94.71)±0.59 | 6.57(28.38)±0.99 | 16.06±0.03 | |
M40T140t180 | 0.03±0.01 | 62.11±0.11 | 1.34(28.42)±0.02 | 13.21(36.33)±0.30 | 63.67±0.50 | 59.66(91.28)±0.58 | 6.44(26.17)±0.30 | 16.60±0.80 | |
M70T140t120 | 0.06±0.03 | 60.58±0.13 | 0.67(13.68)±0.01 | 12.75(34.86)±0.22 | 65.14±1.02 | 66.72(90.13)±0.67 | 4.10(17.63)±0.20 | 17.06±0.13 |
Table 4 Chemical composition of fractions
样品编号 | 固体组分 | 液体组分 | |||||||
---|---|---|---|---|---|---|---|---|---|
灰分/% | 得率/% | 酸溶木质素/% | 酸不溶木质素/% | 木质素脱除率/% | 葡聚糖/% | 木聚糖/% | 木糖/(g/L) | ||
P25T70t30 | 0.34±0.02 | 93.59±0.20 | 4.72(96.08)±0.02 | 22.15(90.57)±0.27 | 9.43±1.22 | 41.42(99.17)±1.00 | 13.47(86.62)±0.33 | 1.70±0.05 | |
P40T70t60 | 0.25±0.00 | 72.56±0.18 | 4.47(83.09)±0.00 | 19.05(68.90)±0.59 | 31.30±0.20 | 43.78(96.50)±0.97 | 12.57(71.34)±0.99 | 2.68±0.04 | |
P25T80t60 | 0.24±0.04 | 80.02±0.20 | 3.56(78.35)±0.02 | 18.94(65.21)±0.30 | 33.79±0.39 | 42.42(98.86)±0.30 | 10.56(58.07)±0.78 | 4.67±0.02 | |
P55T80t30 | 0.17±0.00 | 75.49±0.04 | 3.08(54.94)±0.05 | 16.29(53.20)±0.68 | 47.80±1.03 | 46.59(99.54)±0.78 | 8.52(42.94)±0.88 | 5.45±0.03 | |
P55T70t90 | 0.09±0.00 | 73.36±0.15 | 2.55(45.89)±0.01 | 15.14(50.57)±0.79 | 47.43±1.08 | 56.49(102.89)±0.39 | 6.78(37.05)±0.90 | 6.78±0.02 | |
P40T90t30 | 0.06±0.00 | 70.97±0.13 | 2.08(29.76)±0.03 | 13.54(46.95)±0.20 | 55.05±1.09 | 58.39(100.90)±0.65 | 6.88(35.95)±0.20 | 10.07±0.03 | |
P40T80t90 | 0.08±0.1 | 69.38±0.07 | 1.56(18.92)±0.00 | 13.48(42.80)±0.01 | 57.37±0.98 | 60.30(105.48)±0.76 | 5.15(25.60)±0.44 | 13.92±0.06 | |
P25T90t90 | 0.09±0.03 | 63.73±0.07 | 1.01(8.58)±0.04 | 12.95(37.29)±0.30 | 62.91±0.79 | 59.61(102.34)±0.89 | 5.25(24.81)±0.77 | 14.78±0.08 | |
P55T90t60 | 0.06±0.02 | 58.50±0.20 | 0.53(7.59)±0.01 | 12.54(32.06)±1.49 | 67.94±0.90 | 72.14(98.73)±0.45 | 4.08(16.42)±0.02 | 15.08±0.10 | |
M40T100t60 | 0.31±0.01 | 91.63±0.19 | 4.89(96.28)±0.10 | 22.17(88.76)±0.67 | 11.24±0.76 | 46.77(94.49)±1.29 | 12.33(77.65)±1.08 | 1.89±0.01 | |
M55T100t120 | 0.28±0.04 | 74.50±0.03 | 4.38(83.56)±0.03 | 20.58(75.99)±0.40 | 24.01±1.02 | 56.59(95.59)±0.45 | 9.52(58.73)±0.99 | 7.50±0.02 | |
M70T120t60 | 0.23±0.00 | 72.24±0.16 | 3.68(59.27)±0.02 | 19.05(56.33)±0.30 | 43.67±1.07 | 59.00(93.72)±0.64 | 8.51(45.07)±0.97 | 12.03±0.01 | |
M40T120t120 | 0.18±0.05 | 71.01±0.16 | 3.04(51.57)±0.04 | 18.16(53.46)±0.99 | 46.54±1.11 | 49.10(95.43)±0.82 | 9.24(37.56)±0.76 | 13.92±0.04 | |
M55T140t60 | 0.19±0.00 | 67.98±0.18 | 2.74(49.04)±0.03 | 17.80(49.90)±0.39 | 50.10±0.20 | 62.52(95.61)±0.84 | 7.65(35.74)±0.56 | 15.20±0.02 | |
M70T100t180 | 0.02±0.01 | 65.60±0.09 | 2.03(47.22)±0.01 | 16.06(47.80)±1.01 | 52.20±0.49 | 56.66(93.97)±0.39 | 6.54(32.25)±0.88 | 15.98±0.07 | |
M55T120t180 | 0.05±0.01 | 63.81±0.19 | 1.78(35.07)±0.04 | 15.68(45.04)±0.20 | 54.96±0.59 | 66.73(94.71)±0.59 | 6.57(28.38)±0.99 | 16.06±0.03 | |
M40T140t180 | 0.03±0.01 | 62.11±0.11 | 1.34(28.42)±0.02 | 13.21(36.33)±0.30 | 63.67±0.50 | 59.66(91.28)±0.58 | 6.44(26.17)±0.30 | 16.60±0.80 | |
M70T140t120 | 0.06±0.03 | 60.58±0.13 | 0.67(13.68)±0.01 | 12.75(34.86)±0.22 | 65.14±1.02 | 66.72(90.13)±0.67 | 4.10(17.63)±0.20 | 17.06±0.13 |
水平 | 因素 | 木质素脱除率/% | ||
---|---|---|---|---|
A质量 分数/% | B反应 温度/℃ | C反应 时间/min | ||
1 | 25 | 70 | 30 | 9.43 |
2 | 25 | 80 | 60 | 34.79 |
3 | 25 | 90 | 90 | 62.71 |
4 | 40 | 70 | 60 | 31.10 |
5 | 40 | 80 | 90 | 57.20 |
6 | 40 | 90 | 30 | 53.05 |
7 | 55 | 70 | 90 | 49.43 |
8 | 55 | 80 | 30 | 46.80 |
9 | 55 | 90 | 60 | 67.94 |
K1 | 107 | 0.90 | 190 | |
K2 | 141 | 139 | 134 | |
K3 | 164 | 184 | 169 | |
k1 | 36 | 30 | 36 | |
k2 | 47 | 46 | 45 | |
k3 | 55 | 61 | 56 | |
极差R | 19 | 31 | 20 | |
最优方案 | A3 | B3 | C3 | |
极差R排序 | BCA |
Table 5 TSA orthogonal experiment and range analysis
水平 | 因素 | 木质素脱除率/% | ||
---|---|---|---|---|
A质量 分数/% | B反应 温度/℃ | C反应 时间/min | ||
1 | 25 | 70 | 30 | 9.43 |
2 | 25 | 80 | 60 | 34.79 |
3 | 25 | 90 | 90 | 62.71 |
4 | 40 | 70 | 60 | 31.10 |
5 | 40 | 80 | 90 | 57.20 |
6 | 40 | 90 | 30 | 53.05 |
7 | 55 | 70 | 90 | 49.43 |
8 | 55 | 80 | 30 | 46.80 |
9 | 55 | 90 | 60 | 67.94 |
K1 | 107 | 0.90 | 190 | |
K2 | 141 | 139 | 134 | |
K3 | 164 | 184 | 169 | |
k1 | 36 | 30 | 36 | |
k2 | 47 | 46 | 45 | |
k3 | 55 | 61 | 56 | |
极差R | 19 | 31 | 20 | |
最优方案 | A3 | B3 | C3 | |
极差R排序 | BCA |
水平 | 因素 | 木质素脱除率/% | ||
---|---|---|---|---|
A质量 分数/% | B反应 温度/℃ | C反应 时间/min | ||
1 | 40 | 100 | 60 | 11.24 |
2 | 40 | 120 | 120 | 43.67 |
3 | 40 | 140 | 180 | 63.67 |
4 | 55 | 100 | 120 | 24.01 |
5 | 55 | 120 | 180 | 54.96 |
6 | 55 | 140 | 60 | 50.10 |
7 | 70 | 100 | 180 | 52.20 |
8 | 70 | 120 | 60 | 46.54 |
9 | 70 | 140 | 120 | 65.14 |
K1 | 119 | 96 | 108 | |
K2 | 140 | 147 | 142 | |
K3 | 164 | 179 | 173 | |
k1 | 40 | 32 | 36 | |
k2 | 47 | 49 | 47 | |
k3 | 55 | 60 | 58 | |
极差R | 15 | 11 | 22 | |
最优方案 | A3 | B3 | C3 | |
极差R排序 | CAB |
Table 6 MA orthogonal experiment and range analysis
水平 | 因素 | 木质素脱除率/% | ||
---|---|---|---|---|
A质量 分数/% | B反应 温度/℃ | C反应 时间/min | ||
1 | 40 | 100 | 60 | 11.24 |
2 | 40 | 120 | 120 | 43.67 |
3 | 40 | 140 | 180 | 63.67 |
4 | 55 | 100 | 120 | 24.01 |
5 | 55 | 120 | 180 | 54.96 |
6 | 55 | 140 | 60 | 50.10 |
7 | 70 | 100 | 180 | 52.20 |
8 | 70 | 120 | 60 | 46.54 |
9 | 70 | 140 | 120 | 65.14 |
K1 | 119 | 96 | 108 | |
K2 | 140 | 147 | 142 | |
K3 | 164 | 179 | 173 | |
k1 | 40 | 32 | 36 | |
k2 | 47 | 49 | 47 | |
k3 | 55 | 60 | 58 | |
极差R | 15 | 11 | 22 | |
最优方案 | A3 | B3 | C3 | |
极差R排序 | CAB |
参数 | 单位 | CDF | CHF | ||
---|---|---|---|---|---|
TSA | MA | TSA | MA | ||
α,α′ | — | 35.46 | 11.75 | 26.79 | 9.01 |
β,β′ | — | 0.14 | 9.9E-05 | 0.10 | 0.10 |
E,E′ | J/mol | 95800 | 44187 | 78958 | 49852 |
f,f′ | — | 0.00036 | 0.015 | 0.0072 | 0.08 |
θ,θ′ | — | 0.64 | 0.73 | 0.88 | 0.37 |
θRe,θ | — | 0.33 | 0.35 | 0.14 | 0.00042 |
Table 7 Fitting parameters for Eqs. (4)—(7)
参数 | 单位 | CDF | CHF | ||
---|---|---|---|---|---|
TSA | MA | TSA | MA | ||
α,α′ | — | 35.46 | 11.75 | 26.79 | 9.01 |
β,β′ | — | 0.14 | 9.9E-05 | 0.10 | 0.10 |
E,E′ | J/mol | 95800 | 44187 | 78958 | 49852 |
f,f′ | — | 0.00036 | 0.015 | 0.0072 | 0.08 |
θ,θ′ | — | 0.64 | 0.73 | 0.88 | 0.37 |
θRe,θ | — | 0.33 | 0.35 | 0.14 | 0.00042 |
处理条件 | CDF/(min·mol/L) | CHF/(min·mol/L) |
---|---|---|
P25T70t30 | 363.2 | 21.0 |
P40T70t60 | 1419.4 | 78.6 |
P25T80t60 | 1881.2 | 91.8 |
P55T80t30 | 3121.8 | 139.7 |
P55T70t90 | 3615.9 | 180.6 |
P40T90t30 | 4517.6 | 191.3 |
P40T80t90 | 5514.3 | 258.2 |
P25T90t90 | 6935.4 | 289.1 |
P55T90t60 | 15344.9 | 586.3 |
P55T90t90 | 23017.3 | 879.4 |
M40T100t60 | 21.4 | 0.3 |
M55T100t120 | 57.5 | 1.1 |
M70T120t60 | 82.5 | 1.6 |
M40T120t120 | 88.2 | 2.1 |
M55T140t60 | 114.2 | 2.5 |
M70T100t180 | 119.8 | 2.8 |
M55T120t180 | 178.0 | 3.7 |
M40T140t180 | 254.7 | 4.9 |
M70T140t120 | 317.5 | 8.9 |
M70T140t180 | 476.2 | 13.4 |
Table 8 CDF and CHF values of TSA and MA fractionation
处理条件 | CDF/(min·mol/L) | CHF/(min·mol/L) |
---|---|---|
P25T70t30 | 363.2 | 21.0 |
P40T70t60 | 1419.4 | 78.6 |
P25T80t60 | 1881.2 | 91.8 |
P55T80t30 | 3121.8 | 139.7 |
P55T70t90 | 3615.9 | 180.6 |
P40T90t30 | 4517.6 | 191.3 |
P40T80t90 | 5514.3 | 258.2 |
P25T90t90 | 6935.4 | 289.1 |
P55T90t60 | 15344.9 | 586.3 |
P55T90t90 | 23017.3 | 879.4 |
M40T100t60 | 21.4 | 0.3 |
M55T100t120 | 57.5 | 1.1 |
M70T120t60 | 82.5 | 1.6 |
M40T120t120 | 88.2 | 2.1 |
M55T140t60 | 114.2 | 2.5 |
M70T100t180 | 119.8 | 2.8 |
M55T120t180 | 178.0 | 3.7 |
M40T140t180 | 254.7 | 4.9 |
M70T140t120 | 317.5 | 8.9 |
M70T140t180 | 476.2 | 13.4 |
处理条件 | 数均长度/mm | 重均长度/mm | 宽度/μm | 扭结指数/% | 卷曲指数/% | 细小纤维含量/% | 长宽比 |
---|---|---|---|---|---|---|---|
P25T70t30 | 0.596 | 0.578 | 21.5 | 15.0 | 5.0 | 30.2 | 26.9 |
P40T70t60 | 0.509 | 0.540 | 20.6 | 14.9 | 4.9 | 31.9 | 26.2 |
P25T80t60 | 0.479 | 0.532 | 19.2 | 14.2 | 4.8 | 32.9 | 27.7 |
P55T80t30 | 0.403 | 0.468 | 19.0 | 14.0 | 5.2 | 33.8 | 24.6 |
P55T70t90 | 0.379 | 0.457 | 19.0 | 14.3 | 5.8 | 35.8 | 24.1 |
P40T90t30 | 0.309 | 0.456 | 18.7 | 14.6 | 6.0 | 37.0 | 24.4 |
P40T80t90 | 0.380 | 0.489 | 19.3 | 14.9 | 6.4 | 45.9 | 25.3 |
P25T90t90 | 0.346 | 0.410 | 19.2 | 14.2 | 6.2 | 50.3 | 21.4 |
P55T90t60 | 0.301 | 0.335 | 19.2 | 12.7 | 5.7 | 56.1 | 17.4 |
M40T100t60 | 0.568 | 0.599 | 21.8 | 12.2 | 4.9 | 33.1 | 27.5 |
M55T100t120 | 0.485 | 0.556 | 19.2 | 11.8 | 5.3 | 39.5 | 28.6 |
M70T120t60 | 0.437 | 0.536 | 19.4 | 10.3 | 5.4 | 39.9 | 27.6 |
M40T120t120 | 0.425 | 0.474 | 19.1 | 9.3 | 5.4 | 46.1 | 24.8 |
M55T140t60 | 0.402 | 0.456 | 18.3 | 9.0 | 5.5 | 48.3 | 24.9 |
M70T100t180 | 0.304 | 0.448 | 18.6 | 8.9 | 5.7 | 50.9 | 24.1 |
M55T120t180 | 0.317 | 0.467 | 19.2 | 9.2 | 5.8 | 55.3 | 24.3 |
M40T140t180 | 0.302 | 0.407 | 19.0 | 8.1 | 5.1 | 58.6 | 21.4 |
M70T140t120 | 0.299 | 0.324 | 18.9 | 7.2 | 4.4 | 60.0 | 17.1 |
Table 9 Fiber quality analysis of TSA and MA solid fraction
处理条件 | 数均长度/mm | 重均长度/mm | 宽度/μm | 扭结指数/% | 卷曲指数/% | 细小纤维含量/% | 长宽比 |
---|---|---|---|---|---|---|---|
P25T70t30 | 0.596 | 0.578 | 21.5 | 15.0 | 5.0 | 30.2 | 26.9 |
P40T70t60 | 0.509 | 0.540 | 20.6 | 14.9 | 4.9 | 31.9 | 26.2 |
P25T80t60 | 0.479 | 0.532 | 19.2 | 14.2 | 4.8 | 32.9 | 27.7 |
P55T80t30 | 0.403 | 0.468 | 19.0 | 14.0 | 5.2 | 33.8 | 24.6 |
P55T70t90 | 0.379 | 0.457 | 19.0 | 14.3 | 5.8 | 35.8 | 24.1 |
P40T90t30 | 0.309 | 0.456 | 18.7 | 14.6 | 6.0 | 37.0 | 24.4 |
P40T80t90 | 0.380 | 0.489 | 19.3 | 14.9 | 6.4 | 45.9 | 25.3 |
P25T90t90 | 0.346 | 0.410 | 19.2 | 14.2 | 6.2 | 50.3 | 21.4 |
P55T90t60 | 0.301 | 0.335 | 19.2 | 12.7 | 5.7 | 56.1 | 17.4 |
M40T100t60 | 0.568 | 0.599 | 21.8 | 12.2 | 4.9 | 33.1 | 27.5 |
M55T100t120 | 0.485 | 0.556 | 19.2 | 11.8 | 5.3 | 39.5 | 28.6 |
M70T120t60 | 0.437 | 0.536 | 19.4 | 10.3 | 5.4 | 39.9 | 27.6 |
M40T120t120 | 0.425 | 0.474 | 19.1 | 9.3 | 5.4 | 46.1 | 24.8 |
M55T140t60 | 0.402 | 0.456 | 18.3 | 9.0 | 5.5 | 48.3 | 24.9 |
M70T100t180 | 0.304 | 0.448 | 18.6 | 8.9 | 5.7 | 50.9 | 24.1 |
M55T120t180 | 0.317 | 0.467 | 19.2 | 9.2 | 5.8 | 55.3 | 24.3 |
M40T140t180 | 0.302 | 0.407 | 19.0 | 8.1 | 5.1 | 58.6 | 21.4 |
M70T140t120 | 0.299 | 0.324 | 18.9 | 7.2 | 4.4 | 60.0 | 17.1 |
信号 | δC/δH | 信号归属 |
---|---|---|
S2/6 | 103.9/6.84 | C2/6-H2/6 in syringyl units (S) |
S | 106.2/7.35 | C2/6-H2/6 in oxidized S units (S′) |
Scon | 106.5/6.48 | condensed C2/6-H2/6 in syringyl units |
G2 | 110.9/7.05 | C2-H2 in guaiacyl units (G) |
G | 110.9/7.34 | C2-H2 in oxidized(Cα-O)guaiacyl units (G′) |
G5 | 114.5/6.71 | C5-H5 in guaiacyl units (G) |
G6 | 118.9/6.77 | C6-H6 in guaiacyl units (G) |
Aγ | 59.9/3.63 | Cγ-Hγ in γ-hydroxylated β-O-4′ substructures (A) |
Bγ | 62.6/3.72 | Cγ-Hγ in β-β resinol (B) |
Cγ | 62.4/3.43 | Cγ-Hγ in phenylcoumaran (C) |
A | 64.8/4.31 | Cγ-Hγ in γ-acylated β-O-4(A′ ) |
(A,A′)ɑ | 71.5/5.00 | Cα-Hα in β-O-4′ substructures (A) |
Bɑ | 86.9/5.55 | Cα-Hα in phenylcoumaran substructures(B) |
Cɑ | 86.8/5.47 | Cα-Hα in β-β′ resinol substructures (C) |
Aβ(G) | 83.8/4.48 | Cβ-Hβ in β-O-4′ substructures (A) linked to a G-unit |
Aβ(S) | 86.0/4.25 | Cβ-Hβ in β-O-4′ substructures (A) linked to a S-unit |
Bβ | 53.5/3.46 | Cβ-Hβ in phenylcoumaran substructures(B) |
Cβ | 53.1/3.06 | Cβ-Hβ in β-β′resinol substructures (C) |
methoxyl | 55.6/3.58 | methoxyl |
HKγ | 67.1/4.19 | Cγ-Hγ in Hibbert’s ketone (HK) |
Eγ(MA) | 128.0/6.2, 132.9/6.4, 68.3/4.37 | Cγ-esterified by maleic acid |
Table 10 Assignments of the lignin 13C-1H correlation peaks in the 2D-HSQC spectra of lignin
信号 | δC/δH | 信号归属 |
---|---|---|
S2/6 | 103.9/6.84 | C2/6-H2/6 in syringyl units (S) |
S | 106.2/7.35 | C2/6-H2/6 in oxidized S units (S′) |
Scon | 106.5/6.48 | condensed C2/6-H2/6 in syringyl units |
G2 | 110.9/7.05 | C2-H2 in guaiacyl units (G) |
G | 110.9/7.34 | C2-H2 in oxidized(Cα-O)guaiacyl units (G′) |
G5 | 114.5/6.71 | C5-H5 in guaiacyl units (G) |
G6 | 118.9/6.77 | C6-H6 in guaiacyl units (G) |
Aγ | 59.9/3.63 | Cγ-Hγ in γ-hydroxylated β-O-4′ substructures (A) |
Bγ | 62.6/3.72 | Cγ-Hγ in β-β resinol (B) |
Cγ | 62.4/3.43 | Cγ-Hγ in phenylcoumaran (C) |
A | 64.8/4.31 | Cγ-Hγ in γ-acylated β-O-4(A′ ) |
(A,A′)ɑ | 71.5/5.00 | Cα-Hα in β-O-4′ substructures (A) |
Bɑ | 86.9/5.55 | Cα-Hα in phenylcoumaran substructures(B) |
Cɑ | 86.8/5.47 | Cα-Hα in β-β′ resinol substructures (C) |
Aβ(G) | 83.8/4.48 | Cβ-Hβ in β-O-4′ substructures (A) linked to a G-unit |
Aβ(S) | 86.0/4.25 | Cβ-Hβ in β-O-4′ substructures (A) linked to a S-unit |
Bβ | 53.5/3.46 | Cβ-Hβ in phenylcoumaran substructures(B) |
Cβ | 53.1/3.06 | Cβ-Hβ in β-β′resinol substructures (C) |
methoxyl | 55.6/3.58 | methoxyl |
HKγ | 67.1/4.19 | Cγ-Hγ in Hibbert’s ketone (HK) |
Eγ(MA) | 128.0/6.2, 132.9/6.4, 68.3/4.37 | Cγ-esterified by maleic acid |
样品编号 | CDF/(min·mol/L) | S2/6 | S′2/6 | Scon | S | G | S/G | β-O-4/% | β-5/% | β-β/% |
---|---|---|---|---|---|---|---|---|---|---|
MWL | 0 | 55.56 | 5.98 | 0 | 61.54 | 42.79 | 1.44 | 52.31 | 2.04 | 6.67 |
P40T70t60 | 1419.4 | 72.44 | 2.87 | 10.55 | 85.86 | 14.14 | 6.07 | 50.72 | 0.92 | 5.23 |
P40T80t90 | 5514.3 | 71.65 | 2.23 | 22.18 | 96.06 | 3.94 | 24.40 | 31.23 | 0.79 | 4.20 |
P55T90t60 | 15344.9 | 24.98 | 2.13 | 71.74 | 98.85 | 1.15 | 86.21 | 0 | 0 | 1.84 |
M55T100t120 | 57.5 | 58.56 | 4.10 | 31.15 | 93.81 | 6.19 | 15.15 | 31.33 | 1.00 | 3.87 |
M55T120t180 | 178.0 | 23.14 | 2.77 | 71.42 | 97.33 | 2.67 | 36.49 | 1.53 | 0.40 | 1.03 |
M70T140t120 | 317.5 | 16.13 | 1.30 | 81.62 | 99.05 | 0.95 | 104.67 | 0 | 0 | 0.39 |
Table 11 Semi-quantitative analysis of lignin units and ratio and linkages based on 2D-HSQC spectra
样品编号 | CDF/(min·mol/L) | S2/6 | S′2/6 | Scon | S | G | S/G | β-O-4/% | β-5/% | β-β/% |
---|---|---|---|---|---|---|---|---|---|---|
MWL | 0 | 55.56 | 5.98 | 0 | 61.54 | 42.79 | 1.44 | 52.31 | 2.04 | 6.67 |
P40T70t60 | 1419.4 | 72.44 | 2.87 | 10.55 | 85.86 | 14.14 | 6.07 | 50.72 | 0.92 | 5.23 |
P40T80t90 | 5514.3 | 71.65 | 2.23 | 22.18 | 96.06 | 3.94 | 24.40 | 31.23 | 0.79 | 4.20 |
P55T90t60 | 15344.9 | 24.98 | 2.13 | 71.74 | 98.85 | 1.15 | 86.21 | 0 | 0 | 1.84 |
M55T100t120 | 57.5 | 58.56 | 4.10 | 31.15 | 93.81 | 6.19 | 15.15 | 31.33 | 1.00 | 3.87 |
M55T120t180 | 178.0 | 23.14 | 2.77 | 71.42 | 97.33 | 2.67 | 36.49 | 1.53 | 0.40 | 1.03 |
M70T140t120 | 317.5 | 16.13 | 1.30 | 81.62 | 99.05 | 0.95 | 104.67 | 0 | 0 | 0.39 |
质量分数/% | TSA溶液接触角/(°) | MA溶液接触角/(°) |
---|---|---|
10 | 107.94±1.90 | 103.36±0.40 |
20 | 94.70±1.70 | 103.10±1.80 |
30 | 89.98±0.70 | 102.71±0.02 |
40 | 84.14±0.02 | 98.27±0.04 |
50 | 83.84±0.04 | 96.14±0.01 |
Table 12 The contact angle of acid hydrotropes
质量分数/% | TSA溶液接触角/(°) | MA溶液接触角/(°) |
---|---|---|
10 | 107.94±1.90 | 103.36±0.40 |
20 | 94.70±1.70 | 103.10±1.80 |
30 | 89.98±0.70 | 102.71±0.02 |
40 | 84.14±0.02 | 98.27±0.04 |
50 | 83.84±0.04 | 96.14±0.01 |
1 | 亓伟, 王闻, 王琼, 等. 木质纤维素预处理技术及其机理研究进展[J]. 新能源进展, 2013, 1(2): 150-158. |
Qi W, Wang W, Wang Q, et al. Review on the pretreatment method and mechanism of lignocellulose[J]. Advances in New and Renewable Energy, 2013, 1(2): 150-158. | |
2 | 祝其丽, 何明雄, 谭芙蓉, 等. 木质纤维素生物质预处理研究现状[J]. 生物技术进展, 2015, 5(6): 414-419. |
Zhu Q L, He M X, Tan F R, et al. Progress on pretreatment technologies of lignocellulosic biomass[J]. Current Biotechnology, 2015, 5(6): 414-419. | |
3 | 路鹏, 江滔, 李国学. 木质纤维素乙醇发酵研究中的关键点及解决方案[J]. 农业工程学报, 2006, 22(9): 237-240. |
Lu P, Jiang T, Li G X. Key points of ethanol fermentation of lignocellulose and resolving methods[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(9): 237-240. | |
4 | Tian S, Zhu W, Gleisner R, et al. Comparisons of SPORL and dilute acid pretreatments for sugar and ethanol productions from Aspen[J]. Biotechnology Progress, 2011, 27(2): 419-427. |
5 | Zhao Y L, Wang Y, Zhu J Y, et al. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature[J]. Biotechnology and Bioengineering, 2008, 99(6): 1320-1328. |
6 | Zhang K, Pei Z J, Wang D H. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review[J]. Bioresource Technology, 2016, 199: 21-33. |
7 | Brandt A, Ray M J, To T Q, et al. Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures[J]. Green Chemistry, 2011, 13(9): 2489. |
8 | 周静. 预处理对麦草化学组分分离及酶解性能的影响研究[D]. 北京: 中国林业科学研究院, 2018. |
Zhou J. Investigation on effects of different pretreatment methods on chemical composition of wheat straw and enzymatic hydrolysis[D]. Beijing: Chinese Academy of Forestry, 2018. | |
9 | Lee J, Lee S C, Acharya G, et al. Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property[J]. Pharmaceutical Research, 2003, 20(7): 1022-1030. |
10 | Hodgdon T K, Kaler E W. Hydrotropic solutions[J]. Current Opinion in Colloid & Interface Science, 2007, 12(3): 121-128. |
11 | Rinaldi R, Jastrzebski R, Clough M T, et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis[J]. Angewandte Chemie International Edition, 2016, 55(29): 8164-8215. |
12 | 尹崇鑫, 王敏, 程金兰, 等. 助水溶剂应用在生物质精炼领域的研究进展[J]. 林产化学与工 业, 2021, 41(3): 134-140. |
Yin C X, Wang M, Cheng J L, et al. Research progress of application of hydrotropes in biorefinery[J]. Chemistry and Industry of Forest Products, 2021, 41(3): 134-140. | |
13 | 程金兰, 尹崇鑫, 王敏, 等. p-TsOH对稻草的组分分离动力学及分离产物性质[J]. 林业工程学报, 2022, 7(1): 122-129. |
Cheng J L, Yin C X, Wang M, et al. p-TsOH fractionation kinetics of rice straw and its effect on properties of fraction products[J]. Journal of Forestry Engineering, 2022, 7(1): 122-129. | |
14 | Wang H H, Hirth K, Zhu J J, et al. Dissolution of less-processed wood fibers without bleaching in an ionic liquid: effect of lignin condensation on wood component dissolution[J]. International Journal of Biological Macromolecules, 2019, 134: 740-748. |
15 | Cheng J L, Hirth K, Ma Q L, et al. Toward sustainable and complete wood valorization by fractionating lignin with low condensation using an acid hydrotrope at low temperatures (≤80℃)[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7063-7073. |
16 | Mou H Y, Wu S B. Comparison of organosolv and hydrotropic pretreatments of eucalyptus for enhancing enzymatic saccharification[J]. Bioresource Technology, 2016, 220: 637-640. |
17 | Ansari K B, Gaikar V G. Green hydrotropic extraction technology for delignification of sugarcane bagasse by using alkybenzene sulfonates as hydrotropes[J]. Chemical Engineering Science, 2014, 115: 157-166. |
18 | Chen L H, Dou J Z, Ma Q L, et al. Rapid and near-complete dissolution of wood lignin at ≤80℃ by a recyclable acid hydrotrope[J]. Science Advances, 2017, 3(9): e1701735. |
19 | Wang Z J, Qiu S, Hirth K, et al. Preserving both lignin and cellulose chemical structures: flow-through acid hydrotropic fractionation at atmospheric pressure for complete wood valorization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10808-10820. |
20 | Cai C, Hirth K, Gleisner R, et al. Maleic acid as a dicarboxylic acid hydrotrope for sustainable fractionation of wood at atmospheric pressure and ≤100℃: mode and utility of lignin esterification[J]. Green Chemistry, 2020, 22(5): 1605-1617. |
21 | Zhai Q L, Han S M, Hse C Y, et al. 5-Sulfosalicylic acid as an acid hydrotrope for the rapid and green fractionation of woody biomass[J]. Industrial Crops and Products, 2022, 177: 114435. |
22 | Su C, Hirth K, Liu Z L, et al. Acid hydrotropic fractionation of switchgrass at atmospheric pressure using maleic acid in comparison with p-TsOH: advantages of lignin esterification[J]. Industrial Crops and Products, 2021, 159: 113017. |
23 | Das S, Paul S. Exploring molecular insights into aggregation of hydrotrope sodium cumene sulfonate in aqueous solution: a molecular dynamics simulation study[J]. Journal of Physical Chemistry B, 2015, 119(7): 3142-3154. |
24 | 尉慰奇. 桉木原料的预处理及其酶解糖化的研究[D]. 广州: 华南理工大学, 2012. |
Yu W Q. The study of pretreatment and enzymatic hydrolysis of eucalyptus raw materials[D]. Guangzhou: South China University of Technology, 2012. | |
25 | 李有海, 林奕, 杨丽仙, 等. 正交实验在水质硫化物分析中的应用[J]. 黑龙江科学, 2021, 12(6): 23-25. |
Li Y H, Lin Y, Yang L X, et al. Application of orthogonal experiment in water quality sulfide analysis[J]. Heilongjiang Science, 2021, 12(6): 23-25. | |
26 | 文甲龙. 生物质木质素结构解析及其预处理解离机制研究[D]. 北京: 北京林业大学, 2014. |
Wen J L. Structural elucidation of lignin from biomass and its dissociative mechanism during pretreatment process[D]. Beijing: Beijing Forestry University, 2014. | |
27 | Yin C X, Wang M, Ma Q Z, et al. Valorization of rice straw via hydrotropic lignin extraction and its characterization[J]. Molecules (Basel, Switzerland), 2021, 26(14): 4123. |
28 | Cai C, Li J, Hirth K, et al. Comparison of two acid hydrotropes for sustainable fractionation of birch wood[J]. ChemSusChem, 2020, 13(17): 4649-4659. |
29 | Zhu W, Houtman C J, Zhu J Y, et al. Quantitative predictions of bioconversion of aspen by dilute acid and SPORL pretreatments using a unified combined hydrolysis factor (CHF)[J]. Process Biochemistry, 2012, 47(5): 785-791. |
30 | Ma Q L, Zhu J J, Gleisner R, et al. Valorization of wheat straw using a recyclable hydrotrope at low temperatures (≤90℃)[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14480-14489. |
31 | Zhou H F, Leu S Y, Wu X L, et al. Comparisons of high titer ethanol production and lignosulfonate properties by SPORL pretreatment of lodgepole pine at two temperatures[J]. RSC Adv., 2014, 4(51): 27030-27038. |
32 | Zhu J Y, Chen L H, Cai C. Acid hydrotropic fractionation of lignocelluloses for sustainable biorefinery: advantages, opportunities, and research needs[J]. ChemSusChem, 2021, 14(15): 3031-3046. |
33 | Yang B, Wyman C E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose[J]. Biotechnology and Bioengineering, 2004, 86(1): 88-98. |
34 | 李忠正. 植物纤维资源化学[M]. 北京: 中国轻工业出版社, 2012. |
Li Z Z. Chemistry of Plant Fiber Resources[M]. Beijing: China Light Industry Press, 2012. | |
35 | 蒋侃侃. 马来酸预处理麦秸的研究[D]. 南京: 南京林业大学, 2011. |
Jiang K K. Pretreatment of wheat straw using maleic acid[D]. Nanjing: Nanjing Forestry University, 2011. | |
36 | 李猛, 张亚茹, 高梦亚, 等. 玉米秸秆苞叶与茎皮中磨木木质素和木素-碳水化合物复合体的傅里叶红外光谱分析[J]. 玉米科学, 2020, 28(3): 87-91, 98. |
Li M, Zhang Y R, Gao M Y, et al. FT-IR analysis of MWL and LCC in different parts of corn stalk[J]. Journal of Maize Sciences, 2020, 28(3): 87-91, 98. | |
37 | Del Río J C, Rencoret J, Prinsen P, et al. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods[J]. Journal of Agricultural and Food Chemistry, 2012, 60(23): 5922-5935. |
38 | Yelle D J, Ralph J, Frihart C R. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy[J]. Magnetic Resonance in Chemistry, 2008, 46(6): 508-517. |
39 | Zeng J J, Helms G L, Gao X, et al. Quantification of wheat straw lignin structure by comprehensive NMR analysis[J]. Journal of Agricultural and Food Chemistry, 2013, 61(46): 10848-10857. |
40 | Li N, Li Y D, Yoo C G, et al. An uncondensed lignin depolymerized in the solid state and isolated from lignocellulosic biomass: a mechanistic study[J]. Green Chemistry, 2018, 20(18): 4224-4235. |
41 | Shuai L, Amiri M T, Questell-Santiago Y M, et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J]. Science, 2016, 354(6310): 329-333. |
42 | 姚敏. 磷酸-超声法分离桉木木质素及其结构的表征[D]. 南宁: 广西大学, 2020. |
Yao M. Phosphoric acid-ultrasonic separation eucalyptus lignin and characterization its structure[D]. Nanning: Guangxi University, 2020. | |
43 | Zhang C F, Wang F. Catalytic lignin depolymerization to aromatic chemicals[J]. Accounts of Chemical Research, 2020, 53(2): 470-484. |
44 | Yang L F, Cao J, Jin Y C, et al. Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw[J]. Bioresource Technology, 2012, 124: 283-291. |
45 | 曹婷月. 利用QCM研究木质素结构对纤维素酶吸附和酶水解的影响[D]. 南京: 南京林业大学, 2018. |
Cao T Y. The effect of lignin structure on cellulase adsorption and enzymatic hydrolysis by using QCM[D]. Nanjing: Nanjing Forestry University, 2018. | |
46 | 张颖, 翟勇祥. 木质素的催化加氢转化[J]. 化工学报, 2017, 68(3): 821-830. |
Zhang Y, Zhai Y X. Catalytic hydroprocessing of lignin[J]. CIESC Journal, 2017, 68(3): 821-830. | |
47 | Subramanian D, Anisimov M A. Phase behavior and mesoscale solubilization in aqueous solutions of hydrotropes[J]. Fluid Phase Equilibria, 2014, 362: 170-176. |
48 | Robertson A E, Phan D H, Macaluso J E, et al. Mesoscale solubilization and critical phenomena in binary and quasi-binary solutions of hydrotropes[J]. Fluid Phase Equilibria, 2016, 407: 243-254. |
49 | Enami S, Ishizuka S, Colussi A J. Chemical signatures of surface microheterogeneity on liquid mixtures[J]. The Journal of Chemical Physics, 2019, 150(2): 024702. |
50 | Blanco D, Rivera N, Oulego P, et al. Novel fatty acid anion-based ionic liquids: contact angle, surface tension, polarity fraction and spreading parameter[J]. Journal of Molecular Liquids, 2019, 288: 110995. |
51 | Szumala P, Mowinska A. Perfectly wetting mixtures of surfactants from renewable resources: the interaction and synergistic effects on adsorption and micellization[J]. Journal of Surfactants and Detergents, 2016, 19(3): 437-445. |
52 | 陈杰, 史素青, 宫永宽, 等. 特殊润湿表面制备方法及表面形貌研究进展[J]. 涂料工业, 2021, 51(8): 75-82. |
Chen J, Shi S Q, Gong Y K, et al. Research progress of preparation methods and surface morphology of specially designed wetting surfaces[J]. Paint & Coatings Industry, 2021, 51(8): 75-82. | |
53 | Koparkar Y P, Gaikar V G. Solubility of o-/p-hydroxyacetophenones in aqueous solutions of sodium alkyl benzene sulfonate hydrotropes[J]. Journal of Chemical & Engineering Data, 2004, 49(4): 800-803. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[3] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[4] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[5] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[6] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[7] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[8] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[9] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[10] | Wenqi HOU, Yan SUN, Xiaoyan DONG. Basification modification of transthyretin significantly enhances inhibitory effect on amyloid-β protein aggregation [J]. CIESC Journal, 2023, 74(5): 2100-2110. |
[11] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[12] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[13] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[14] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[15] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||