CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 546-553.DOI: 10.11949/0438-1157.20200287
• Material science and engineering, nanotechnology • Previous Articles Next Articles
LIU Zengxin1(),WANG Yijun1,HAO Chunlian2,LIU Xiuping1()
Received:
2020-04-06
Revised:
2020-10-16
Online:
2021-06-20
Published:
2021-06-20
Contact:
LIU Xiuping
通讯作者:
刘秀萍
作者简介:
刘增欣(1970—),女,硕士,实验师,基金资助:
CLC Number:
LIU Zengxin,WANG Yijun,HAO Chunlian,LIU Xiuping. Metal-organic frameworks: metathesis of zinc(Ⅱ) with copper(Ⅱ) for efficient CO2/CH4 separation[J]. CIESC Journal, 2021, 72(S1): 546-553.
刘增欣,王依军,郝春莲,刘秀萍. Zn/Cu单晶转换MOF材料的CO2/CH4分离性能研究[J]. 化工学报, 2021, 72(S1): 546-553.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Structural representation of NEM-7-Zn tetracarboxylate linker (a); Coordination environments of the metal centers in the secondary building units (b); Packing mode presentation of NEM-7-Zn (c)
Fig.2 XRD patterns of NEM-7-Zn (simulated from X-ray crystal diffraction data) and NEM-7-Zn and as-synthesized NEM-7-Cu samples, activated NEM-7-Cu, activated NEM-7-Zn, respectively(a); FT-IR spectra of ligand H5N, NEM-7-Zn and NEM-7-Cu in the as-synthesized, and activated adsorbed states (b)
Fig.3 Photographs of the NEM-7-Zn sample before and after the metal-ion metathesis (a); Kinetic profiles of the framework metal ion exchange of Zn2+ in NEM-7-Zn with Cu2+ (b); EDX for the conversion of NEM-7-Zn (c) to NEM-7-Cu(d)
Fig.4 The N2 adsorption isotherm in NEM-7-Zn and NEM-7-Cu at 77 K(a); Pore size distribution for NEM-7-Cu evaluated by using N2 adsorption data measured at 77 K (b)
Fig.5 The adsorption isotherms and isosteric heats of adsorption of NEM-7-Cu CO2 (a),C2H2 (b) and CH4 (c) adsorption isotherms in NEM-7-Cu at 273 K and 298 K; The isosteric heats of adsorption of C2H2, CO2 and CH4 (d)
Fig.6 Density distribution of CO2 molecules in the unit cell of NEM-7-Cu at 273 K and 0.1 bar simulated by GCMC (a);Adsorption selectivities of NEM-7-Cu calculated by the IAST method for mixtures of CO2/CH4 (b) and C2H2/CH4 (c)
3 | Chmelik C, Freude D, Bux H, et al. Ethene/ethane mixture diffusion in the MOF sieve ZIF-8 studied by MAS PFG NMR diffusometry[J]. Microporous and Mesoporous Materials, 2012, 147(1): 135-141. |
4 | 崔希利, 邢华斌. 金属有机框架材料分离低碳烃的研究进展[J]. 化工学报, 2018, 69(6): 2339-2352. |
Cui X L, Xing H B. Separation of light hydrocarbons with metal-organic frameworks[J]. CIESC Journal, 2018, 69(6): 2339-2352. | |
5 | 原野, 王明, 周云琪, 等. 金属有机框架孔径调控进展[J]. 化工学报, 2020, 71(2): 429-450. |
Yuan Y, Wang M, Zhou Y Q, et al. Progress in pore size regulation of metal-organic frameworks[J]. CIESC Journal, 2020, 71(2): 429-450. | |
6 | Singh D, Croiset E, Douglas P L, et al. Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion[J]. Energy Conversion and Management, 2003, 44(19): 3073-3091. |
7 | Fan W D, Wang X, Xu B, et al. Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance[J]. Journal of Materials Chemistry A, 2018, 6(47): 24486-24495. |
8 | Xue Y Y, Li S N, Jiang Y C, et al. Quest for 9-connected robust metal-organic framework platforms based on [M3(O/OH)(COO)6(pyridine)3] clusters as excellent gas separation and asymmetric supercapacitor materials[J]. Journal of Materials Chemistry A, 2019, 7(9): 4640-4650. |
9 | Zhao X, Wang Y X, Li D S, et al. Metal-organic frameworks for separation[J]. Advanced Materials, 2018, 30(37): 1705189. |
10 | Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932. |
11 | Yu G L, Zou X Q, Sun L, et al. Constructing connected paths between UiO-66 and PIM-1 to improve membrane CO2 separation with crystal-like gas selectivity[J]. Advanced Materials, 2019, 31(15): 1806853. |
12 | He Y P, Chen G H, Yuan L B, et al. Ti4(embonate)6 cage-ligand strategy on the construction of metal-organic frameworks with high stability and gas sorption properties[J]. Inorganic Chemistry, 2020, 59(2): 964-967. |
13 | Gupta M, Chatterjee N, De D. Metal-organic frameworks of Cu(II) constructed from functionalized ligands for high capacity H2 and CO2 gas adsorption and catalytic studies[J]. Chemical Review, 2020, 59(3): 1810-1822. |
14 | Chen Y P, Liu T F, Fordham S, et al. Crystal engineering on superpolyhedral building blocks in metal-organic frameworks applied in gas adsorption[J]. Acta Crystallographica Section B, 2015, 71(6): 613-618. |
15 | Yoo D K, Yoon T U, Bae Y S, et al. Metal-organic framework MIL-101 loaded with polymethacrylamide with or without further reduction: effective and selective CO2 adsorption with amino or amide functionality[J]. Chemical Engineering Journal, 2020, 380: 122496. |
1 | Liu K, Bai H K, Wang J B, et al. How to reduce energy intensity in China's heavy industry—evidence from a seemingly uncorrelated regression[J]. Journal of Cleaner Production, 2018, 180: 708-715. |
2 | Sun F Z, Yang S Q, Krishna R, et al. Microporous metal-organic framework with a completely reversed adsorption relationship for C2 hydrocarbons at room temperature[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6105-6111. |
16 | Wang Y, He M H, Gao X X, et al. Three isoreticular ssa-type MOFs derived from bent diisophthalate ligands: exploring the substituent effect on structural stabilities and selective C2H2/CH4 and CO2/CH4 adsorption properties[J]. Dalton Transactions, 2018, 47(36): 12702-12710. |
17 | Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359. |
18 | Zhou M, Ju Z, Yuan D. A new metal-organic framework constructed from cationic nodes and cationic linkers for highly efficient anion exchange[J]. Chemical Communications, 2018, 54(24): 2998-3001. |
19 | Zhang M X, Wang Q, Lu Z Y, et al. A nitro-decorated NbO-type metal-organic framework with a highly selective CO2 uptake and CH4 storage capacity[J]. CrystEngComm, 2014, 16(28): 6287-6290. |
20 | Wen H M, Chang G G, Li B, et al. Highly enhanced gas uptake and selectivity via incorporating methoxy groups into a microporous metal-organic framework[J]. Crystal Growth & Design, 2017, 17(4): 2172-2177. |
21 | Lin R B, Li L, Wu H, et al. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material[J]. Journal of the American Chemical Society, 2017, 139(23): 8022-8028. |
22 | Liu X P, Hao C L, Li J, et al. An anionic metal–organic framework: metathesis of zinc(Ⅱ) with copper(Ⅱ) for efficient C3/C2 hydrocarbon and organic dye separation[J]. Inorganic Chemistry Frontiers, 2018, 5(11): 2898-2905. |
23 | Gupta A, Chempath S, Sanborn M J, et al. Object-oriented programming paradigms for molecular modeling[J]. Molecular Simulation, 2003, 29(1): 29-46. |
24 | Yang J, Wang X, Dai F, et al. Improving the porosity and catalytic capacity of a zinc paddlewheel metal-organic framework (MOF) through metal-ion metathesis in a single-crystal-to-single-crystal fashion[J]. Inorganic Chemistry, 2014, 53(19): 10649-10653. |
25 | Xiao Z Y, Wang Y T, Zhang S Y, et al. Stepwise synthesis of diverse isomer MOFs via metal-ion metathesis in a controlled single-crystal-to-single-crystal transformation[J]. Crystal Growth & Design, 2017, 17(8): 4084-4089. |
26 | Zhang J W, Hu M C, Li S N, et al. Microporous rod metal-organic frameworks with diverse Zn/Cd-triazolate ribbons as secondary building units for CO2 uptake and selective adsorption of hydrocarbons[J]. Dalton Transactions, 2017, 46(3): 836-844. |
27 | Liu B, Li D S, Hou L, et al. An unprecedented acylamide-functionalized 2D→3D microporous metal-organic polycatenation framework exhibiting highly selective CO2 capture[J]. Dalton Transactions, 2013, 42(27): 9822-9825. |
28 | King S C, Lin R B, Wang H L, et al. Two-dimensional metal-organic frameworks for selective separation of CO2/CH4 and CO2/N2[J]. Materials Chemistry Frontiers, 2017, 1(8): 1514-1519. |
29 | Tang F S, Lin R B, Lin R G, et al. Separation of C2 hydrocarbons from methane in a microporous metal-organic framework[J]. Journal of Solid State Chemistry, 2018, 258: 346-350. |
30 | Zheng B S, Yang Z, Bai J F, et al. High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal-organic frameworks[J]. Chemical Communications, 2012, 48(56): 7025-7027. |
31 | Phan A, Doonan C J, Uribe-Romo F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Accounts of Chemical Research, 2010, 43(1): 58-67. |
[1] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[2] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[3] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[4] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[5] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[6] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[7] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[8] | Can YANG, Xueqi SUN, Minghua SHANG, Jian ZHANG, Xiangping ZHANG, Shaojuan ZENG. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems [J]. CIESC Journal, 2023, 74(4): 1419-1432. |
[9] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[10] | Feng WANG, Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction [J]. CIESC Journal, 2023, 74(1): 29-44. |
[11] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[12] | Muzi LI, Guowei JIA, Yanlong ZHAO, Xin ZHANG, Jianrong LI. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture [J]. CIESC Journal, 2023, 74(1): 365-379. |
[13] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[14] | Xin LI, Shaojuan ZENG, Kuilin PENG, Lei YUAN, Xiangping ZHANG. Research progress and tendency of CO2 electrocatalytic reduction to syngas [J]. CIESC Journal, 2023, 74(1): 313-329. |
[15] | Guojun XI, Zihan LIU, Guangping LEI. Enhanced adsorption and separation of low concentration coalbed methane based on synergistic effect between FeTPPs and CuBTC [J]. CIESC Journal, 2022, 73(9): 3940-3949. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||