CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 3174-3181.DOI: 10.11949/0438-1157.20220097
• Surface and interface engineering • Previous Articles Next Articles
Jihao ZHAO1(),Weiqiang TANG1,Xiaofei XU1(),Shuangliang ZHAO1,2,Jionghao HE3
Received:
2022-01-18
Revised:
2022-04-12
Online:
2022-08-01
Published:
2022-07-05
Contact:
Xiaofei XU
赵继昊1(),唐伟强1,徐小飞1(),赵双良1,2,贺炅皓3
通讯作者:
徐小飞
作者简介:
赵继昊(1996—),男,硕士研究生,基金资助:
CLC Number:
Jihao ZHAO, Weiqiang TANG, Xiaofei XU, Shuangliang ZHAO, Jionghao HE. Adsorption energy of bonding agent on nano-filler in polymer composites[J]. CIESC Journal, 2022, 73(7): 3174-3181.
赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181.
缺陷类型 | 吸附能/eV | ||
---|---|---|---|
DPG | DPTU | DOTG | |
无缺陷 | -0.99 | -1.12 | -1.28 |
单空位 | -0.99 | -1.12 | -1.27 |
双空位 | -0.97 | -1.09 | -1.26 |
Stone-Wales | -1.01 | -1.14 | -1.30 |
Table 1 Adsorption energy of organic molecules with different defect types of carbon black
缺陷类型 | 吸附能/eV | ||
---|---|---|---|
DPG | DPTU | DOTG | |
无缺陷 | -0.99 | -1.12 | -1.28 |
单空位 | -0.99 | -1.12 | -1.27 |
双空位 | -0.97 | -1.09 | -1.26 |
Stone-Wales | -1.01 | -1.14 | -1.30 |
Fig.8 Adsorption of DPTU on carbon black with different defect types: (a) normal;(b) single vacancy defect;(c) divacancy defect;(d) Stone-Wales defect
基底类型 | 吸附能/eV | ||
---|---|---|---|
DPG | DPTU | DOTG | |
双层炭黑 | -1.01 | -1.14 | -1.29 |
双层SiO2 | -0.87 | -0.89 | -0.94 |
双层SiO2@OH | -1.16 | -1.20 | -1.35 |
Table 2 Adsorption energy of organic molecules with different substrates
基底类型 | 吸附能/eV | ||
---|---|---|---|
DPG | DPTU | DOTG | |
双层炭黑 | -1.01 | -1.14 | -1.29 |
双层SiO2 | -0.87 | -0.89 | -0.94 |
双层SiO2@OH | -1.16 | -1.20 | -1.35 |
1 | 郝丽娜, 张文广, 李莹莹. 功能高分子材料在工业领域中的应用及展望[J]. 天津化工, 2021, 35(5): 16-17. |
Hao L N, Zhang W G, Li Y Y. Application and prostect of functional polymer materials in industrial field[J]. Tianjin Chemical Industry, 2021, 35(5): 16-17. | |
2 | Kosareva E K, Zharkov M N, Meerov D B, et al. HMX surface modification with polymers via sc-CO2 antisolvent process: a way to safe and easy-to-handle energetic materials[J]. Chemical Engineering Journal, 2022, 428: 131363. |
3 | 黄伟, 杨凯, 张乾, 等.橡胶补强填料中煤矸石活化改性的研究进展[J].洁净煤技术, 2022, 28(1): 166-174. |
Huang W, Yang K, Zhang Q, et al. Research progress on activation modification of coal gangue as rubber reinforxing filler[J]. Clean Coal Technology, 2022, 28(1): 166-174. | |
4 | 李鹏举, 吴晓辉, 卢咏来, 等. 氧化石墨烯/白炭黑纳米杂化填料在绿色轮胎胎面中的应用[J]. 合成橡胶工业, 2019, 42(4): 294-299. |
Li P J, Wu X H, Lu Y L, et al. Application of graphene oxide/silica nano-hybrids in green tire tread[J]. China Synthetic Rubber Industry, 2019, 42(4): 294-299. | |
5 | Abdelhafiz M, Yehia M, Mostafa H E, et al. Self-catalyzed nanoscale ammonium perchlorate for advanced composite solid rocket propellant[J]. Nano Express, 2021, 2(3): 030008. |
6 | Pangamol P, Malee W, Yujaroen R, et al. Utilization of bagasse ash as a filler in natural rubber and styrene-butadiene rubber composites[J]. Arabian Journal for Science and Engineering, 2018, 43(1): 221-227. |
7 | 解佳楠. 新型填料与炭黑、白炭黑的杂化改性及在橡胶中的应用[D]. 青岛: 青岛科技大学, 2019. |
Xie J N. New filler and hybrid modification with carbon black and silica and application in rubber[D]. Qingdao: Qingdao University of Science & Technology, 2019. | |
8 | Lu Y H, Chen W, Feng Y P, et al. Tuning the electronic structure of graphene by an organic molecule[J]. The Journal of Physical Chemistry B, 2009, 113(1): 2-5. |
9 | Tian X Q, Xu J B, Wang X M. Self-assembly of PTCDA ultrathin films on graphene: structural phase transition and charge transfer saturation[J]. The Journal of Physical Chemistry C, 2010, 114(49): 20917-20924. |
10 | Coletti C, Riedl C, Lee D S, et al. Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping[J]. Physical Review B, 2010, 81(23): 235401. |
11 | Vovusha H, Sanyal S, Sanyal B. Interaction of nucleobases and aromatic amino acids with graphene oxide and graphene flakes[J]. The Journal of Physical Chemistry Letters, 2013, 4(21): 3710-3718. |
12 | 王赛, 郭洋, 刘昌树. 二氧化硅作为新型环保吸附剂在食用油中的高效吸附作用[J]. 中国油脂, 2021, 46(8): 150-152. |
Wang S, Guo Y, Liu C S. High efficient adsorption of silica as a new environmentally friendly adsorbent in edible oil[J]. China Oils and Fats, 2021, 46(8): 150-152. | |
13 | 张志强, 屈一新, 任慧. 纳米二氧化硅物理吸附乙醇的密度泛函研究[J]. 物理化学学报, 2006, 22(7): 820-825. |
Zhang Z Q, Qu Y X, Ren H. Density functional theory studies on ethanol physisorption on ultrafine silica[J]. Acta Physico-Chimica Sinica, 2006, 22(7): 820-825. | |
14 | Irfan Akay T, Toffoli D, Ustunel H. Combined effect of point defects and layer number on the adsorption of benzene and toluene on graphene[J]. Applied Surface Science, 2019, 480: 1063-1069. |
15 | Gao H W, Liu Z J. DFT study of NO adsorption on pristine graphene[J]. RSC Advances, 2017, 7(22): 13082-13091. |
16 | Li B, Ou P F, Wei Y L, et al. Polycyclic aromatic hydrocarbons adsorption onto graphene: a DFT and AIMD study[J]. Materials (Basel, Switzerland), 2018, 11(5): 726. |
17 | Karlický F, Otyepková E, Lo R, et al. Adsorption of organic molecules to van der Waals materials: comparison of fluorographene and fluorographite with graphene and graphite[J]. Journal of Chemical Theory and Computation, 2017, 13(3): 1328-1340. |
18 | Abuelela A M, Farag R S, Mohamed T A, et al. Ab initio study of the vibrational signatures for the covalent functionalization of graphene[J]. The Journal of Physical Chemistry C, 2013, 117(38): 19489-19498. |
19 | Hassan M, Walter M, Moseler M. Interactions of polymers with reduced graphene oxide: van der Waals binding energies of benzene on graphene with defects[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(1): 33-37. |
20 | Yeh I C, Andzelm J W. Computational study of structural and energetic properties of ammonium perchlorate at interfaces[J]. The Journal of Physical Chemistry C, 2021, 125(22): 12297-12304. |
21 | Chigo Anota E, Torres Soto A, Cocoletzi G H. Studies of graphene-chitosan interactions and analysis of the bioadsorption of glucose and cholesterol[J]. Applied Nanoscience, 2014, 4(8): 911-918. |
22 | Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review B, Condensed Matter, 1993, 48(17): 13115-13118. |
23 | Yu H B, Zhao J H, Wu C Z, et al. Highly efficient Ir-CoO x hybrid nanostructures for the selective hydrogenation of furfural to furfuryl alcohol[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2021, 37(5): 1894-1901. |
24 | Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, Condensed Matter, 1990, 41(11): 7892-7895. |
25 | Sholl D S, Steckel J A. 密度泛函理论[M]. 李健,周勇,译. 北京: 国防工业出版社, 2014. |
Sholl D S, Steckel J A. Density Functional Theory[M].Li J, Zhou Y, trans. Beijing: National Defense Industry Press, 2014. | |
26 | Lu T, Chen F W. Multiwfn: a multifunctional wave function analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
27 | Manzetti S, Lu T, Behzadi H, et al. Intriguing properties of unusual silicon nanocrystals[J]. RSC Advances, 2015, 5(95): 78192-78208. |
28 | Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics & Modelling, 1996, 14(1): 33-38. |
29 | 姚维尚, 吴文辉, 贾展宁, 等. 硝胺推进剂的界面键合作用[J]. 北京理工大学学报, 1995, 15(6): 74-78. |
Yao W S, Wu W H, Jia Z N, et al. Investigation on interfacial bonding in HMX-containing model propellant composite[J]. Journal of Beijing Institute of Technology, 1995, 15(6): 74-78. | |
30 | 吴文辉, 黎玉钦, 张聪, 等. 中性聚合物键合剂对硝胺推进剂相界面的作用[J]. 推进技术, 2001, 22(4): 337-340. |
Wu W H, Li Y Q, Zhang C, et al. Interfacial reinforcement of neutral polymeric bonding agents (NPBA) in nitramine propellants[J]. Journal of Propulsion Technology, 2001, 22(4): 337-340. | |
31 | 虞振飞. 高能固体推进剂相关组分物理相容性的分子模拟研究[D]. 北京: 北京理工大学, 2016. |
Yu Z F. Investigation of physical compatibility of related components in novel high energy solid propellant by molecular simulation[D]. Beijing: Beijing Institute of Technology, 2016. | |
32 | 王瑞. 含能分子系统中的分子间氢键作用特性及振动能量转移过程理论研究[D]. 长春: 吉林大学, 2020. |
Wang R. Theoretical studies on the intermolecular hydrogen bonding properties and vibrational energy transfer processes in energetic molecule systems[D]. Changchun: Jilin University, 2020. | |
33 | 刘新国, 刘佩进, 强洪夫. 复合固体推进剂脱湿研究进展[J]. 固体火箭技术, 2018, 41(3): 313-318, 337. |
Liu X G, Liu P J, Qiang H F. Recent advances on research of the dewetting in composite solid propellants[J]. Journal of Solid Rocket Technology, 2018, 41(3): 313-318, 337. | |
34 | 时文欣, 贾旗, 高浩, 等. 氧化石墨烯对天然橡胶性能的影响[J]. 弹性体, 2021, 31(5): 17-24. |
Shi W X, Jia Q, Gao H, et al. Effects of graphene oxide on the properties of natural rubber [J]. China Elastomerics, 2021, 31(5): 17-24. | |
35 | 杨永岗, 陈成猛, 温月芳, 等. 氧化石墨烯及其与聚合物的复合[J]. 新型炭材料, 2008, 23(3): 193-200. |
Yang Y G, Chen C M, Wen Y F, et al. Oxidized graphene and graphene based polymer composites[J]. New Carbon Materials, 2008, 23(3): 193-200. | |
36 | Giesbers A J M, Bouten P C P, Cillessen J F M, et al. Defects, a challenge for graphene in flexible electronics[J]. Solid State Communications, 2016, 229: 49-52. |
37 | 马丽娟, 韩婷, 高升启, 等. 单缺陷对Sc, Ti, V修饰石墨烯的结构及储氢性能的影响[J]. 物理学报, 2021, 70(21): 218802. |
Ma L J, Han T, Gao S Q, et al. Effect of monovacancy on stability and hydrogen storage property of Sc/Ti/V-decorated graphene[J]. Acta Physica Sinica, 2021, 70(21): 218802. | |
38 | Ugeda M M, Fernández-Torre D, Brihuega I, et al. Point defects on graphene on metals[J]. Physical Review Letters, 2011, 107(11): 116803. |
39 | Ugeda M M, Brihuega I, Hiebel F, et al. Electronic and structural characterization of divacancies in irradiated graphene[J]. Physical Review B, 2012, 85(12): 121402. |
40 | Liu X J, Zhang X, Bo M L, et al. Coordination-resolved electron spectrometrics[J]. Chemical Reviews, 2015, 115(14): 6746-6810. |
41 | 郝良鹏, 柴颂刚, 曾耀德, 等. 一种精确测定二氧化硅表面羟基数量的新方法[J]. 广州化工, 2019, 47(4): 93-94, 121. |
Hao L P, Chai S G, Zeng Y D, et al. A new method for accurate determination of OH groups density on silica surface[J]. Guangzhou Chemical Industry, 2019, 47(4): 93-94, 121. | |
42 | Jin J Q, Wang X M, Wick C D, et al. Silica surface states and their wetting characteristics[J]. Surface Innovations, 2020, 8(3): 145-157. |
[1] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[2] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[3] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[4] | Feng DU, Siqi YIN, Hui LUO, Wenan DENG, Chuan LI, Zhenwei HUANG, Wenjing WANG. Study on size effect of H2 adsorption and dissociation on Mo x S y clusters [J]. CIESC Journal, 2022, 73(9): 3895-3903. |
[5] | Xiaqi YU, Ge FENG, Jinyan ZHAO, Jiayuan LI, Shengwei DENG, Jingnan ZHENG, Wenwen LI, Yaqiu WANG, Lan SHEN, Xu LIU, Weiwei XU, Jianguo WANG, Shibin WANG, Zihao YAO, Chengli MAO. A first-principles study of the interaction between TDI-TMP-T313 and AP [J]. CIESC Journal, 2022, 73(8): 3511-3517. |
[6] | Xiaokun HE, Yuan XUE, Ran ZUO. Quantum chemistry study on gas reaction path in InN MOCVD growth [J]. CIESC Journal, 2022, 73(12): 5638-5647. |
[7] | Xiaosong LUO, Jinbao HUANG, Mei ZHOU, Xin MU, Weiwei XU, Lei WU. Theoretical study on the mechanism of hydrolysis/alcoholysis/ammonolysis of butanediol terephthalate dimer [J]. CIESC Journal, 2022, 73(11): 4859-4871. |
[8] | Xiang GONG, Linsen LI, Zhao JIANG. Employing PdCo/SiO2 catalyst in high activity dehydrogenation reaction of heterocyclic H2 storage carrier [J]. CIESC Journal, 2022, 73(10): 4448-4460. |
[9] | Xianhui ZHU, Fu WANG, Jiecheng XIA, Jinliang YUAN. Density functional theory investigation on the NH3 and CO2 absorption by functional ionic liquids [J]. CIESC Journal, 2022, 73(10): 4324-4334. |
[10] | Shenggui MA, Bowen TIAN, Yuwei ZHOU, Lin CHEN, Xia JIANG, Tao GAO. DFT study of adsorption of H2S on N-doped Stone-Wales defected graphene [J]. CIESC Journal, 2021, 72(9): 4496-4503. |
[11] | ZHANG Fangfang, HAN Min, ZHAO Juan, LING Lixia, ZHANG Riguang, WANG Baojun. DFT study on reduction of NO over Pd atom anchored on single-vacancy graphene [J]. CIESC Journal, 2021, 72(3): 1382-1391. |
[12] | TANG Weiqiang, XIE Peng, XU Xiaofei, ZHAO Shuangliang. Development and applications of reaction density functional theory [J]. CIESC Journal, 2021, 72(2): 633-652. |
[13] | Zilong TANG,Fanfan XIAO,Yuhua YIN,Senyu LI,Jinglun WANG. Recent advances in application of functional organosilane for organic-inorganic composite solid electrolyte [J]. CIESC Journal, 2021, 72(10): 5002-5015. |
[14] | GE Bingqing, YIN Yixuan, WANG Yaxi, ZHANG Hongwei, YUAN Pei. Study of solvent effect on the dissolution, size, structure and catalytic hydrogenation of nitrile butadiene rubber [J]. CIESC Journal, 2021, 72(1): 543-554. |
[15] | Jiaxin LIU, Yu XU, Er HUA. Structure and hydrogen bonding study on acylamino acid protic ionic liquids composed of 2-N-ethylhexylethylenediaminim cation with acylalanineate anions [J]. CIESC Journal, 2020, 71(S1): 15-22. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 254
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 642
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||