CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5638-5647.DOI: 10.11949/0438-1157.20221276

• Material science and engineering, nanotechnology • Previous Articles     Next Articles

Quantum chemistry study on gas reaction path in InN MOCVD growth

Xiaokun HE1(), Yuan XUE2,3, Ran ZUO4()   

  1. 1.Suzhou Institute of Technology, Jiangsu University of Science and Technology, Zhangjiagang 215600, Jiangsu, China
    2.Department of Chemistry and Biochemistry, The University of Mississippi, Oxford 38677, Mississippi, USA
    3.Department of Chemistry and Biochemistry, Oberlin College and Conservatory, Oberlin 44074, Ohio, USA
    4.School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • Received:2022-09-22 Revised:2022-12-02 Online:2023-01-17 Published:2022-12-05
  • Contact: Ran ZUO

MOCVD生长InN气相反应路径的量子化学研究

何晓崐1(), 薛园2,3, 左然4()   

  1. 1.江苏科技大学苏州理工学院,江苏 张家港 215600
    2.密西西比大学化学与生物化学系,密西西比 牛津 38677
    3.欧柏林学院化学与生物化学系,俄亥俄 欧柏林 44074
    4.江苏大学能源与动力工程学院,江苏 镇江 212013
  • 通讯作者: 左然
  • 作者简介:何晓崐(1987—),男,硕士,讲师,kenhe25@163.com
  • 基金资助:
    国家自然科学基金项目(61474058)

Abstract:

By performing density functional theory (DFT) calculations of quantum chemistry, the gas-phase reaction paths in the InN MOCVD process are systematically investigated. By calculating the changes of Gibbs energy (ΔG) and the energy barrier (ΔG*/RT) of all proposed steps at different temperatures, the main gas reaction paths in InN growth from TMIn/NH3 are determined. According to computational results, when N2 is used as the carrier gas, the TMIn pyrolysis path competes with the adduct path could for the main reaction. The TMIn pyrolysis dominates the gas reaction path at high temperatures(T>873.0 K), whereas at low temperature (T<602.4 K), the adduct reaction to form TMIn:NH3 is favored, and the decomposition of TMIn:NH3 is predominant at medium temperature (602.4 K <T <873.0 K).When H2 is used as the carrier gas, the H and NH2 radicals can be generated through gas pyrolysis as well as surface reactions. Because H radicals can accelerate the TMIn pyrolysis and NH2 radicals canreact with TMIn and DMIn to generate DMInNH2, both radicals can disrupt InN MOCVD process. The formed amides can further react with H radicals and generate InNH2 near the high temperature substrate, and hence swaps the surface reaction precursors from MMIn and In to InNH2. Additionally, this study also illustrate how changing reaction temperature could affect InN MOCVD gas-phase pathways, and reveals novel reaction pathways with the interferences from H and NH2 radicals.

Key words: density functional theory, InN, gas-phase reactions, MOCVD, radical

摘要:

利用量子化学的密度泛函理论,对MOCVD生长InN的气相反应路径进行较全面的计算分析,通过计算不同温度下各反应的Gibbs能差和反应能垒,分别从热力学和动力学角度确定从TMIn/NH3生长InN的主要气相反应路径。研究发现:当载气为N2时,InN生长的气相反应路径主要为热解路径与加合路径的竞争。在高温(T>873.0 K)时以TMIn的热解为主,在低温(T<602.4 K)时以TMIn与NH3的加合反应为主,在中温(602.4 K<T<873.0 K)时以加合物TMIn:NH3的分解反应为主。当载气为H2时,由于气相热解和表面反应将产生H和NH2自由基,H自由基将加速TMIn的热解,NH2自由基将与TMIn、DMIn等反应生成氨基物DMInNH2。H自由基还会与氨基物反应,在高温衬底附近生成InNH2,从而使表面反应前体由传统的MMIn和In变为InNH2。研究结果给出了InN MOCVD气相反应路径与温度的定量关系,以及H和NH2自由基的参与引起的新的气相反应路径。

关键词: 密度泛函, InN, 气相反应, MOCVD, 自由基

CLC Number: