CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 4884-4892.DOI: 10.11949/0438-1157.20221011
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xing TIAN(), Jiayue ZHANG, Zhigang GUO, Jian YANG(), Qiuwang WANG
Received:
2022-07-20
Revised:
2022-09-27
Online:
2022-12-06
Published:
2022-11-05
Contact:
Jian YANG
通讯作者:
杨剑
作者简介:
田兴(1994—),男,博士研究生,tianxing12@stu.xjtu.edu.cn
基金资助:
CLC Number:
Xing TIAN, Jiayue ZHANG, Zhigang GUO, Jian YANG, Qiuwang WANG. Flow and heat transfer characteristics of particles flowing along the plate with different mixing elements[J]. CIESC Journal, 2022, 73(11): 4884-4892.
田兴, 张家悦, 郭志罡, 杨剑, 王秋旺. 颗粒外掠含不同掺混单元平板的流动换热特性[J]. 化工学报, 2022, 73(11): 4884-4892.
Add to citation manager EndNote|Ris|BibTeX
变量 | 值 |
---|---|
L/mm | 16 |
W/mm | 5 |
H/mm | 66 |
Tinlet/K | 800 |
Tw/K | 300 |
ρp/(kg/m3) | 2680 |
cp,p/(J/(kg·K)) | 730 |
kp/(W/(m·K)) | 1.3 |
voutlet/(mm/s) | 1.0~10.0 |
dp/mm | 1.0 |
Table 1 Geometric and particle parameters in simulation
变量 | 值 |
---|---|
L/mm | 16 |
W/mm | 5 |
H/mm | 66 |
Tinlet/K | 800 |
Tw/K | 300 |
ρp/(kg/m3) | 2680 |
cp,p/(J/(kg·K)) | 730 |
kp/(W/(m·K)) | 1.3 |
voutlet/(mm/s) | 1.0~10.0 |
dp/mm | 1.0 |
1 | Jiang K J, Du X Z, Kong Y Q, et al. A comprehensive review on solid particle receivers of concentrated solar power[J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109463. |
2 | Behar O, Khellaf A, Mohammedi K. A review of studies on central receiver solar thermal power plants[J]. Renewable and Sustainable Energy Reviews, 2013, 23: 12-39. |
3 | He Y L, Qiu Y, Wang K, et al. Perspective of concentrating solar power[J]. Energy, 2020, 198: 117373. |
4 | Nie F L, Cui Z Y, Bai F W, et al. Properties of solid particles as heat transfer fluid in a gravity driven moving bed solar receiver[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110007. |
5 | Gomez-Garcia F, Gauthier D, Flamant G. Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage[J]. Applied Energy, 2017, 190: 510-523. |
6 | Fernández-Torrijos M, Albrecht K J, Ho C K. Dynamic modeling of a particle/supercritical CO2 heat exchanger for transient analysis and control[J]. Applied Energy, 2018, 226: 595-606. |
7 | Ma Z W, Martinek J. Analysis of a fluidized-bed particle/supercritical-CO2 heat exchanger in a concentrating solar power system[J]. Journal of Solar Energy Engineering, 2021, 143(3): 031010. |
8 | Ho C K, Carlson M, Albrecht K J, et al. Evaluation of alternative designs for a high temperature particle-to-SCO2 heat exchanger[C]//Proceedings of ASME 2018 12th International Conference on Energy Sustainability Collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum. Lake Buena Vista, Florida, USA, 2018. |
9 | Yin J M, Zheng Q Y, Zhang X R. Heat transfer model of a particle energy storage-based moving packed bed heat exchanger[J]. Energy Storage, 2020, 2(1): e113. |
10 | Wei G S, Huang P R, Pan L F, et al. Experimental, numerical and analytical modeling of heat transfer of gravity driven dense particle flow in vertical heated plates[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122571. |
11 | Fang W C, Chen S, Xu J Y, et al. Predicting heat transfer coefficient of a shell-and-plate, moving packed-bed particle-to-sCO2 heat exchanger for concentrating solar power[J]. Energy, 2021, 217: 119389. |
12 | Yu Y P, Nie F L, Bai F W, et al. Theoretical and experimental investigation on heating moving packed beds in a single tube with constant wall temperature[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121725. |
13 | Albrecht K J, Ho C K. Heat transfer models of moving packed-bed particle-to-SCO2 heat exchangers[C]//ASME 2017 11th International Conference on Energy Sustainability. Charlotte, North Carolina, USA: American Society of Mechanical Engineers, 2017. |
14 | Albrecht K J, Ho C K. Design and operating considerations for a shell-and-plate, moving packed-bed, particle-to-sCO2 heat exchanger[J]. Solar Energy, 2019, 178: 331-340. |
15 | Guo Z G, Tan Z T, Tian X, et al. Heat transfer prediction of granular flow in moving bed heat exchanger: characteristics of heat transfer enhancement and dynamic control[J]. Solar Energy, 2021, 230: 1052-1069. |
16 | 郭志罡, 杨剑, 田兴, 等. 不同翅片单元外颗粒流换热特性的数值研究[J]. 工程热物理学报, 2021, 42(4): 1015-1020. |
Guo Z G, Yang J, Tian X, et al. Numerical study on heat transfer characteristic of granular flow around different fin elements[J]. Journal of Engineering Thermophysics, 2021, 42(4): 1015-1020. | |
17 | Tian X, Yang J, Guo Z G, et al. Numerical investigation of gravity-driven granular flow around the vertical plate: effect of pin-fin and oscillation on the heat transfer[J]. Energies, 2021, 14(8): 2187. |
18 | Isaza P A, Warnica W D, Bussmann M. Co-current parallel-plate moving bed heat exchanger: an analytical solution[J]. International Journal of Heat and Mass Transfer, 2015, 87: 616-624. |
19 | di Renzo A, di Maio F P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science, 2004, 59(3): 525-541. |
20 | Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology, 1992, 71(3): 239-250. |
21 | Deng S G, Wen Z, Lou G F, et al. Process of particles flow across staggered tubes in moving bed[J]. Chemical Engineering Science, 2020, 217: 115507. |
22 | Zhang R Q, Yang H R, Lu J F, et al. Theoretical and experimental analysis of bed-to-wall heat transfer in heat recovery processing[J]. Powder Technology, 2013, 249: 186-195. |
23 | Tsotsas E. Particle-particle heat transfer in thermal DEM: three competing models and a new equation[J]. International Journal of Heat and Mass Transfer, 2019, 132: 939-943. |
24 | Chen R H, Guo K L, Zhang Y S, et al. Numerical analysis of the granular flow and heat transfer in the ADS granular spallation target[J]. Nuclear Engineering and Design, 2018, 330: 59-71. |
25 | Molerus O. Heat transfer in moving beds with a stagnant interstitial gas[J]. International Journal of Heat and Mass Transfer, 1997, 40(17): 4151-4159. |
26 | Tian X, Guo Z G, Jia H N, et al. Numerical investigation of a new type tube for shell-and-tube moving packed bed heat exchanger[J]. Powder Technology, 2021, 394: 584-596. |
27 | Tian X, Zhu F, Guo Z G, et al. Numerical investigation of gravity-driven particle flow along the trapezoidal corrugated plate for a moving packed bed heat exchanger[J]. Powder Technology, 2022, 405: 117526. |
28 | Guo Z G, Tian X, Tan Z T, et al. Numerical investigation of heat resistances in uniform dense granular flows along a vertical plate[J]. Powder Technology, 2021, 385: 396-408. |
29 | Bauer R, Schluender E U. Effective radial thermal conductivity of packings in gas flow-1.Convective transport coefficient[J]. International Chemical Engineering, 1978, 18: 181-188. |
30 | Bauer R, Schluender E U. Effective radial thermal conductivity of packings in gas flow-2.Thermal conductivity of the packing fraction without gas flow[J]. International Chemical Engineering, 1978, 18: 189-204. |
31 | Breitbach G, Barthels H. The radiant heat transfer in the high temperature reactor core after failure of the afterheat removal systems[J]. Nuclear Technology, 1980, 49(3): 392-399. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[10] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[11] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[12] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[15] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||