CIESC Journal ›› 2020, Vol. 71 ›› Issue (S2): 92-97.DOI: 10.11949/0438-1157.20200556
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Feng GAO(),Yongchang CHEN(),Jinlong ZHAO,Chongfang MA
Received:
2020-05-11
Revised:
2020-06-15
Online:
2020-11-06
Published:
2020-11-06
Contact:
Yongchang CHEN
通讯作者:
陈永昌
作者简介:
高峰(1988—),男,硕士,基金资助:
CLC Number:
Feng GAO, Yongchang CHEN, Jinlong ZHAO, Chongfang MA. Influence of magnetic field on jet impingement heat transfer with molten salt[J]. CIESC Journal, 2020, 71(S2): 92-97.
高峰, 陈永昌, 赵金龙, 马重芳. 磁场对熔盐射流冲击传热的影响[J]. 化工学报, 2020, 71(S2): 92-97.
1 | Patil N G, Hotta T K. A review on cooling of discrete heated modules using liquid jet impingement [J]. Frontiers in Heat and Mass Transfer, 2018, 11(16): 1-13. |
2 | 杨婧, 王小军, 杨祺. 冲击射流换热研究进展[J]. 真空与低温, 2018, 24(4): 217-222. |
Yang J, Wang X J, Yang Q. Advances in jet impinging heat transfer [J]. Vacuum & Cryogenics, 2018, 24(4): 217-222. | |
3 | Webb B W, Ma C F. Single-phase liquid jet impingement heat transfer [J]. Advances in Heat Transfer, 1995, 26(8): 105-217. |
4 | Jambunathan K, Lai E, Moss M A, et al. A review of heat transfer data for single circular jet impingement [J]. International Journal of Heat & Fluid Flow, 1992, 13(2): 106-115. |
5 | Singh D, Premachandran B, Kohli S. Effect of nozzle shape on jet impingement heat transfer from a circular cylinder [J]. International Journal of Thermal Sciences, 2015, 96: 45-69. |
6 | Nagesha K, Srinivasan K, Sundararajan T. Enhancement of jet impingement heat transfer using surface roughness elements at different heat inputs [J]. Experimental Thermal and Fluid Science, 2020, 112: 109995. |
7 | 冷浩, 郭烈锦, 张西民, 等. 圆形自由表面水射流冲击换热特性[J]. 化工学报, 2003, 54(11): 1510-1512. |
Leng H, Guo L J, Zhang X M. Heat transfer with impinging circular free-surface water jet [J]. Journal of Chemical Industry and Engineering (China), 2003, 54(11): 1510-1512. | |
8 | 王磊, 苑中显, 马重芳, 等. R-113圆形射流冲击模拟电子芯片单相对流换热的实验研究[J]. 工程热物理学报, 1999, 20(4): 487-490. |
Wang L, Yuan Z X, Ma C F, et al. Experimental study on the heat transfer from simulated chips to impinging R-113 jets [J]. Journal of Engineering Thermophysics, 1999, 20(4): 487-490. | |
9 | 刘晓鸿. 液体单相射流冲击换热实验研究[D]. 西安: 西安交通大学, 2003. |
Liu X H. Experimental study on heat transfer of single-phase liquid jet impingement [D]. Xi􀆳an: Xi􀆳an Jiaotong University, 2003. | |
10 | Sun H, Ma C F, Tian Y Q. Local convective heat transfer from small heaters to impinging submerged axisymmetric jets of seven coolants with Prandtl number ranging from 0.7 to 348 [J]. Journal of Thermal Science, 1997, 6(4): 286-297. |
11 | Lü J Z, Chang S N, Hu C Z, et al. Experimental investigation of free single jet impingement using Al2O3-water nanofluid [J]. International Communications in Heat and Mass Transfer, 2017, 88: 126-135. |
12 | Kareem Z S, Balla H H, AbdulWahid A F. Heat transfer enhancement in single circular impingement jet by CuO-water nanofluid [J]. Case Studies in Thermal Engineering, 2019, 15: 100508. |
13 | 郑天新, 梁精龙, 李慧, 等. 熔盐技术在新能源中的应用现状[J]. 无机盐工业, 2018, 50(3): 11-15. |
Zheng T X, Liang J L, Li H, et al. Application status of molten salt technology in new energy [J]. Inorganic Chemicals Industry, 2018, 50(3): 11-15. | |
14 | 文玉良, 丁静, 杨晓西, 等. 高温熔盐横纹管传热特性与强化机理研究[J]. 工程热物理学报, 2010, 31(1): 113-115. |
Wen Y L, Ding J, Yang X X, et al. Heat transfer characteristic and enhanced mechanism of high-temperature molten salt in transverse corrugated tubes [J]. Journal of Engineering Thermophysics, 2010, 31(1): 113-115. | |
15 | Yang M L, Yang X X, Yang X P, et al. Heat transfer enhancement and performance of the molten salt receiver of a solar power tower [J]. Applied Energy, 2010, 87(9): 2808-2811. |
16 | 王军辉, 颜建国, 郭鹏程, 等. 水平小通道内高温熔盐对流传热特性实验研究[J]. 水动力学研究与进展, 2019, 34(1): 25-31. |
Wang J H, Yan J G, Guo P C, et al. Experimental studies on convection heat transfer of high-temperature molten salt flowing in a horizontal circular mini-tube [J]. Chinese Journal of Hydrodynamics, 2019, 34(1): 25-31. | |
17 | 扶麟. 熔盐-蒸汽套管换热器耦合传热特性研究[D]. 郑州: 华北水利水电大学, 2018. |
Fu L. Study on coupled heat transfer characteristics in molten salt-steam double-pipe heat exchanger [D]. Zhengzhou: North China University of Water Resources and Electric Power, 2018. | |
18 | 缪洪康. 熔盐-熔盐板(翅)式换热器数值模拟研究[D]. 上海: 中国科学院上海应用物理研究所, 2018. |
Miao H K. Numerical simulation of molten salt-molten salt plate heat exchanger and plate fin heat exchanger [D]. Shanghai: University of Chinese Academy of Sciences, 2018. | |
19 | 陈虎, 吴玉庭, 鹿院卫, 等. 熔盐纳米流体的研究进展[J]. 储能科学与技术, 2018, 7(1): 48-55. |
Chen H, Wu Y T, Lu Y W, et al. A review on molten salt-based nanofluids: recent developments [J]. Energy Storage Science and Technology, 2018, 7(1): 48-55. | |
20 | Wang W, Wu Z, Li B X, et al. A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer [J]. Journal of Thermal Analysis and Calorimetry, 2018, 136(3): 1037–1051. |
21 | Wang B T, Chen Y C, Cai J B, et al. Experimental investigation of circular submerged jet impingement heat transfer with mixed molten salt [J]. Experimental Thermal and Fluid Science, 2018, 98: 30-37. |
22 | Nurdin I, Yaacob I I, Johan M R. Enhancement of thermal conductivity and kinematic viscosity in magnetically controllable maghemite (γ-Fe2O3) nanofluids [J]. Experimental Thermal and Fluid Science, 2016, 77: 265-271. |
23 | Viswat E, Hermans L J F, Beenakker J J M. Experiments on the influence of magnetic fields on the viscosity of water and a water-NaCl solution [J]. Physics of Fluids, 1982, 25(10): 1794-1796. |
24 | 陈艳玲. 磁场对导电液体材料流动状态影响的研究[D]. 天津: 河北工业大学, 2011. |
Chen Y L. Research on the influence of magnetic fields to the flow state of conductive liquid material [D]. Tianjin: Hebei University of Technology, 2011. | |
25 | 王正良. 磁场强化磁性液体自然对流传热的机理[J]. 化工学报, 2005, 56(2): 235-238. |
Wang Z L. Mechanism of natural convection heat transfer of magnetic fluid enhanced by magnetic field [J]. Journal of Chemical Industry and Engineering (China), 2005, 56(2): 235-238. | |
26 | Fadaei F, Shahrokhi M, Dehkordi A M, et al. Forced-convection heat transfer of ferrofluids in a circular duct partially filled with porous medium in the presence of magnetic field [J]. Journal of Magnetism and Magnetic Materials, 2019, 475: 304-315. |
27 | Bezaatpour M, Goharkhah M. Convective heat transfer enhancement in a double pipe mini heat exchanger by magnetic field induced swirling flow [J]. Applied Thermal Engineering, 2020, 167: 114801. |
28 | 杨立军, 杨昆仑, 任建勋, 等. 梯度磁场作用下自然对流换热强化[J]. 化工学报, 2005, 56(7): 1181-1186. |
Yang L J, Yang K L, Ren J X, et al. Natural convection heat transfer enhancement by gradient magnetic field [J]. Journal of Chemical Industry and Engineering (China), 2005, 56(7): 1181-1186. | |
29 | 杨昆仑, 宋耀祖, 任建勋. 封闭方腔热磁对流强化换热的实验研究[J]. 工程热物理学报, 2006, 27(6): 996-998. |
Yang K L, Song Y Z, Ren J X. Experiment study of magnetothermal convection in a rectangle cavity [J]. Journal of Engineering Thermophysics, 2006, 27(6): 996-998. | |
30 | 于星星, 张杰, 倪明玖. 水平磁场中液态金属射流的三维数值研究[J]. 中国科学院大学学报, 2019, 36(4): 481-486. |
Yu X X, Zhang J, Ni M J. 3D numerical simulations of liquid metal jet under a horizontal magnetic field [J]. Journal of University of Chinese Academy of Sciences, 2019, 36(4): 481-486. | |
31 | Nakharintr L, Naphon P. Magnetic field effect on the enhancement of nanofluids heat transfer of a confined jet impingement in mini-channel heat sink [J]. International Journal of Heat and Mass Transfer, 2017, 110: 753-759. |
32 | 任楠. 混合碳酸盐和低熔点熔盐的配制与热物性实验研究[D]. 北京: 北京工业大学, 2011. |
Ren N. Preparation and experimental study of thermal properties of mixed carbonates and molten salts with low melting point [D]. Beijing: Beijing University of Technology, 2011. | |
33 | 丁振良. 误差理论与数据处理[M]. 2版. 哈尔滨: 哈尔滨工业大学出版社, 2002. |
Ding Z L. Error Theory and Data Processing [M]. 2nd ed. Harbin: Harbin Institute of Technology Press, 2002. |
[1] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[2] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[3] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[4] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[5] | Tianqi TANG, Yurong HE. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed [J]. CIESC Journal, 2022, 73(6): 2636-2648. |
[6] | Tao ZHENG, Haiyan LIU, Rui ZHANG, Xianghai MENG, Yuanyuan YUE, Zhichang LIU. Research progress on mesoscale activation of natural aluminosilicate minerals based on green synthesis of molecular sieve [J]. CIESC Journal, 2022, 73(6): 2334-2351. |
[7] | Ran LIU, Jie LI, Yubing WANG, Hongbo ZHAN, Dalin ZHANG. Experimental study on condensation heat transfer of R134a in mini channel with micro diamond fins [J]. CIESC Journal, 2022, 73(11): 4938-4947. |
[8] | Zhimin LIN, Chongzhao WANG, Guozhi QIANG, Shushan LIU, Liangbi WANG. Analysis of flow and heat transfer characteristics of lubricating oil in circular tube with coaxial crossed vortex generators [J]. CIESC Journal, 2022, 73(11): 4957-4973. |
[9] | Boyang REN, Xiaogang CHE, Siyu LIU, Man WANG, Xinghua HAN, Ting DONG, Juan YANG. Preparation of coal-based porous carbon nanosheets by molten salt strategy as anodes for sodium-ion batteries [J]. CIESC Journal, 2022, 73(10): 4745-4753. |
[10] | Weixiang LIN, Gangchuan SU, Qiang CHEN, Jian WEN, Simin WANG. Research on heat transfer enhancement of immersed coil heat exchanger by ultrasonic technology [J]. CIESC Journal, 2021, 72(8): 4055-4063. |
[11] | LIU Yizheng, SHI Bin, RAN Ling, TANG Jun, TAN Siping, LIU Jiangtao, ZHANG Peng, ZHAO Jinbao. Research progress of molten salt electrolyte and separator materials for thermal batteries [J]. CIESC Journal, 2021, 72(7): 3524-3537. |
[12] | WEI Xiaolan, XIE Pei, WANG Weilong, LU Jianfeng, DING Jing. Calculation of phase diagram and thermal stability of molten salt for ternary chloride systems containing calcium [J]. CIESC Journal, 2021, 72(6): 3074-3083. |
[13] | XIONG Yaxuan, QIAN Xiangyao, LI Shuo, SUN Mingyuan, WANG Zhenyu, WU Yuting, XU Peng, DING Yulong, MA Chongfang. Effect of preparation methods on thermal energy storage performance and formation mechanism of molten salt nanofluids [J]. CIESC Journal, 2021, 72(5): 2857-2868. |
[14] | Hongbo ZHAN, Wenyuan ZHENG, Tao WEN, Dalin ZHANG. Experimental investigation on condensation heat transfer of refrigerant R134a in micro-scale channel [J]. CIESC Journal, 2020, 71(S1): 83-89. |
[15] | Guoda HE, Rui TANG, Xuezhi DUAN, Leidong XIE, Jie FU, Jianxing DAI, Yuan QIAN, Jianqiang WANG. Molecular dynamics investigation on microstructure and diffusion properties of LiF-BeF2 molten salt [J]. CIESC Journal, 2020, 71(8): 3565-3574. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 269
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 336
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||