CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3541-3552.DOI: 10.11949/0438-1157.20220232
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Huibo MENG1,2(), Tong MENG1,2, Yanfang YU1,2(), Zongyong WANG1,2, Jianhua WU1,2
Received:
2022-02-23
Revised:
2022-04-08
Online:
2022-09-06
Published:
2022-08-05
Contact:
Yanfang YU
孟辉波1,2(), 蒙彤1,2, 禹言芳1,2(), 王宗勇1,2, 吴剑华1,2
通讯作者:
禹言芳
作者简介:
孟辉波(1981—),男,博士,教授,syuct_hj@163.com
基金资助:
CLC Number:
Huibo MENG, Tong MENG, Yanfang YU, Zongyong WANG, Jianhua WU. Turbulent heat transfer and mixing enhancement characteristics in Ross LPD static mixer[J]. CIESC Journal, 2022, 73(8): 3541-3552.
孟辉波, 蒙彤, 禹言芳, 王宗勇, 吴剑华. Ross LPD型静态混合器内湍流传热与混合强化特性[J]. 化工学报, 2022, 73(8): 3541-3552.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
入口段长度 (l1) | 40 mm |
元件长度 (l2) | 82.91 mm |
相邻元件距离 (l3) | 60 mm |
出口段长度 (l4) | 60 mm |
椭圆板长轴 (a) | 88.11 mm |
椭圆板短轴 (b) | 40 mm |
管径 (D) | 40 mm |
叶片夹角 (α) | 30° |
元件个数 | 12 |
元件厚度 (δ) | 2 mm |
Table 1 Specifications of the Ross LPD static mixer
参数 | 数值 |
---|---|
入口段长度 (l1) | 40 mm |
元件长度 (l2) | 82.91 mm |
相邻元件距离 (l3) | 60 mm |
出口段长度 (l4) | 60 mm |
椭圆板长轴 (a) | 88.11 mm |
椭圆板短轴 (b) | 40 mm |
管径 (D) | 40 mm |
叶片夹角 (α) | 30° |
元件个数 | 12 |
元件厚度 (δ) | 2 mm |
Model | Error of f/% | Error of Nu/% |
---|---|---|
SST k-ω | 7.07 | 6.31 |
Standard k-ω | 7.32 | 9.88 |
BSL k-ω | 9.03 | 9.1 |
Realizable k-ε | 14.86 | 191.43 |
Transition k-kl-ω | 7.52 | 25.43 |
Standard k-ε | 14.42 | 225.66 |
RNG k-ε | 13.13 | 310.87 |
Transition SST | 7.11 | 19.68 |
Reynolds stress | 12.06 | 136.95 |
Table 2 Error between predicted results of different models and experimental data
Model | Error of f/% | Error of Nu/% |
---|---|---|
SST k-ω | 7.07 | 6.31 |
Standard k-ω | 7.32 | 9.88 |
BSL k-ω | 9.03 | 9.1 |
Realizable k-ε | 14.86 | 191.43 |
Transition k-kl-ω | 7.52 | 25.43 |
Standard k-ε | 14.42 | 225.66 |
RNG k-ε | 13.13 | 310.87 |
Transition SST | 7.11 | 19.68 |
Reynolds stress | 12.06 | 136.95 |
边界层层数(B) | 网格数量/个 |
---|---|
0 | 1095201 |
5 | 1562317 |
7 | 1746037 |
10 | 1999405 |
13 | 2721679 |
15 | 2813697 |
Table 3 Initialization parameter for grid independence verification
边界层层数(B) | 网格数量/个 |
---|---|
0 | 1095201 |
5 | 1562317 |
7 | 1746037 |
10 | 1999405 |
13 | 2721679 |
15 | 2813697 |
1 | 朱兵, 陈定江, 蒋萌, 等. 化学工程在低碳发展转型中的关键作用探讨: 从物质资源利用与碳排放关联的视角[J]. 化工学报, 2021, 72(12): 5893-5903. |
Zhu B, Chen D J, Jiang M, et al. Key role of chemical engineering in transition to low-carbon development in perspective of the linkage between resource utilization and carbon emissions[J]. CIESC Journal, 2021, 72(12): 5893-5903. | |
2 | 初广文, 廖洪钢, 王丹, 等. 微纳介尺度气液反应过程强化[J]. 化工学报, 2021, 72(7): 3435-3444. |
Chu G W, Liao H G, Wang D, et al. Gas-liquid reaction process intensification at micro-/ nano-mesoscale[J]. CIESC Journal, 2021, 72(7): 3435-3444. | |
3 | 刘有智. 谈过程强化技术促进化学工业转型升级和可持续发展[J]. 化工进展, 2018, 37(4): 1203-1211. |
Liu Y Z. Discussion on process intensification technology to promote the transformation, upgrading and sustainable development of chemical industry[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1203-1211. | |
4 | Zhu Y T, Bin Mohamad Sultan B, Nguyen X, et al. Performance study and comparison between catalytic static mixer and packed bed in heterogeneous hydrogenation of vinyl acetate[J]. Journal of Flow Chemistry, 2021, 11(3): 515-523. |
5 | Valdés J P, Kahouadji L, Matar O K. Current advances in liquid-liquid mixing in static mixers: a review[J]. Chemical Engineering Research and Design, 2022, 177: 694-731. |
6 | Meng H B, Wang J B, Yu Y F, et al. CFD-PBM numerical study on liquid-liquid dispersion in the Q-type static mixer[J]. Industrial & Engineering Chemistry Research, 2021, 60(49): 18121-18135. |
7 | Hu Q X, Qu X H, Peng W, et al. Experimental and numerical investigation of turbulent heat transfer enhancement of an intermediate heat exchanger using corrugated tubes[J]. International Journal of Heat and Mass Transfer, 2022, 185: 122385. |
8 | Sheikholeslami M, Gorji-Bandpy M, Ganji D D. Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 444-469. |
9 | Meng H B, Han M Q, Yu Y F, et al. Numerical evaluations on the characteristics of turbulent flow and heat transfer in the Lightnin static mixer[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119788 |
10 | Thakur R K, Vial C, Nigam K D P, et al. Static mixers in the process industries—a review[J]. Chemical Engineering Research and Design, 2003, 81(7): 787-826. |
11 | Meng H B, Hao Y N, Yu Y F, et al. Experimental study of gas-liquid two-phase bubbly flow characteristics in a static mixer with three twisted leaves[J]. Korean Journal of Chemical Engineering, 2020, 37(11): 1859-1866. |
12 | Beisl S, Adamcyk J, Friedl A. Direct precipitation of lignin nanoparticles from wheat straw organosolv liquors using a static mixer[J]. Molecules (Basel, Switzerland), 2020, 25(6): 1388. |
13 | 任新林, 梅毅, 冯梦黎, 等. SK静态混合器对工业磷酸脱砷的过程强化研究[J]. 化工学报, 2018, 69(S2): 218-225. |
Ren X L, Mei Y, Feng M L, et al. Process intensification of removing arsenic from industrial phosphoric acid by Keltics static mixer[J]. CIESC Journal, 2018, 69(S2): 218-225. | |
14 | 谢沛, 王凯, 邓建, 等. 模块化微反应系统内溴化间甲基苯甲醚连续合成[J]. 化工学报, 2020, 71(9): 4168-4176. |
Xie P, Wang K, Deng J, et al. Continuous synthesis of 4-bromo-3-methylanisole in modular microreaction system[J]. CIESC Journal, 2020, 71(9): 4168-4176. | |
15 | Pezo L, Pezo M, Banjac V, et al. Blending performance of the coupled Ross static mixer and vertical feed mixer—discrete element model approach[J]. Powder Technology, 2020, 375: 20-27. |
16 | Revathi D, Saravanan K. Experimental studies on hydrodynamic aspects for mixing of non-Newtonian fluids in a Komax static mixer[J]. Chemical Industry and Chemical Engineering Quarterly, 2020, 26(4): 329-335. |
17 | Alvarez A J, Myerson A S. Continuous plug flow crystallization of pharmaceutical compounds[J]. Crystal Growth & Design, 2010, 10(5): 2219-2228. |
18 | Ghanem A, Lemenand T, Della Valle D, et al. Static mixers: mechanisms, applications, and characterization methods—a review[J]. Chemical Engineering Research and Design, 2014, 92(2): 205-228. |
19 | Anxionnaz Z, Cabassud M, Gourdon C, et al. Heat exchanger/reactors (HEX reactors): concepts, technologies: state-of-the-art[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(12): 2029-2050. |
20 | Joshi P, Nigam K D P, Nauman E B. The Kenics static mixer: new data and proposed correlations[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 59(3): 265-271. |
21 | Jiang X R, Xiao Z D, Jiang J N, et al. Effect of element thickness on the pressure drop in the Kenics static mixer[J]. Chemical Engineering Journal, 2021, 424: 130399. |
22 | Jiang X R, Yang N, Wang R J. Effect of aspect ratio on the mixing performance in the Kenics static mixer[J]. Processes, 2021, 9(3): 464. |
23 | Habchi C, Lemenand T, Della Valle D, et al. Entropy production and field synergy principle in turbulent vortical flows[J]. International Journal of Thermal Sciences, 2011, 50(12): 2365-2376. |
24 | Habchi C, Russeil S, Bougeard D, et al. Enhancing heat transfer in vortex generator-type multifunctional heat exchangers[J]. Applied Thermal Engineering, 2012, 38: 14-25. |
25 | Kwon B, Liebenberg L, Jacobi A M, et al. Heat transfer enhancement of internal laminar flows using additively manufactured static mixers[J]. International Journal of Heat and Mass Transfer, 2019, 137: 292-300. |
26 | Meng H B, Wang F, Yu Y F, et al. A numerical study of mixing performance of high-viscosity fluid in novel static mixers with multitwisted leaves[J]. Industrial & Engineering Chemistry Research, 2014, 53(10): 4084-4095. |
27 | Meng H B, Zhu G X, Yu Y F, et al. The effect of symmetrical perforated holes on the turbulent heat transfer in the static mixer with modified Kenics segments[J]. International Journal of Heat and Mass Transfer, 2016, 99: 647-659. |
28 | Yu Y F, Wang H Y, Song M Y, et al. The effects of element direction and intersection angle of adjacent Q-type inserts on the laminar flow and heat transfer[J]. Applied Thermal Engineering, 2016, 94: 282-295. |
29 | Meng H B, Song M Y, Yu Y F, et al. Enhancement of laminar flow and mixing performance in a lightnin static mixer[J]. International Journal of Chemical Reactor Engineering, 2017, 15(3): 20160112. |
30 | 李权树, 魏思远, 龚斌, 等. Kenics型静态混合器充分发展段纵向涡演变分析[J]. 过程工程学报, 2016, 16(4): 549-555. |
Li Q S, Wei S Y, Gong B, et al. Analysis on evolution of longitudinal vortexes in fully developed zone of a kenics static mixer[J]. The Chinese Journal of Process Engineering, 2016, 16(4): 549-555. | |
31 | 禹言芳, 李中根, 孟辉波, 等. Lightnin静态混合器内瞬态流场POD分析及混合特性研究[J]. 北京化工大学学报(自然科学版), 2021, 48(4): 19-26. |
Yu Y F, Li Z G, Meng H B, et al. Proper orthogonal decomposition (POD) analysis of the transient flow field and mixing characteristics in a Lightnin static mixer[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2021, 48(4): 19-26. | |
32 | Rukruang A, Chimres N, Kaew-On J, et al. A critical review on the thermal performance of alternating cross-section tubes[J]. Alexandria Engineering Journal, 2022, 61(9): 7315-7337. |
33 | Jovanović A, Pezo M, Pezo L, et al. DEM/CFD analysis of granular flow in static mixers[J]. Powder Technology, 2014, 266: 240-248. |
34 | Schultz R, Cole R. Uncertainty analysis in boiling nucleation[J]. AIChE Symposium Series, 1979, 75(189): 32-39. |
35 | Blasius H. Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Mitteilung 131 über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens[M]. Berlin: Springer, 1913. |
36 | Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368. |
37 | Petukhov B S. Heat transfer and friction in turbulent pipe flow with variable physical properties[J]. Advances in Heat Transfer, 1970, 6(C): 503-564. |
38 | Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12(1): 3-22. |
39 | Kurnia J C, Sasmito A P, Mujumdar A S. Evaluation of the heat transfer performance of helical coils of non-circular tubes[J]. Journal of Zhejiang University-SCIENCE A, 2011, 12(1): 63-70. |
40 | Kurnia J C, Sasmito A P, Jangam S V, et al. Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES)[J]. Applied Thermal Engineering, 2013, 50(1): 896-907. |
41 | 罗守南. 基于超声多普勒方法的管道流量测量研究[D]. 北京: 清华大学, 2004. |
Luo S N. Research on pipe-flow measurement based on ultrasonic Doppler methods[D]. Beijing: Tsinghua University, 2004. | |
42 | Çengel Y A, Cimbala J M. Fluid Mechanics: Fundamentals and Applications[M]. New York: McGraw Hill Publication, 2006. |
43 | 傅鑫亮, 闫志勇. 仿柳叶形静态混合器的流动及混合特性[J]. 化工学报, 2017, 68(12): 4600-4606. |
Fu X L, Yan Z Y. Flow and mixing characteristics in willow leaf-like static mixer[J]. CIESC Journal, 2017, 68(12): 4600-4606. | |
44 | Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225. |
45 | Zeng M, Tao W Q. Numerical verification of the field synergy principle for turbulent flow[J]. Journal of Enhanced Heat Transfer, 2004, 11(4): 453-460. |
46 | Tao W Q, He Y L, Wang Q W, et al. A unified analysis on enhancing single phase convective heat transfer with field synergy principle[J]. International Journal of Heat and Mass Transfer, 2002, 45(24): 4871-4879. |
47 | Tao W Q, Guo Z Y, Wang B X. Field synergy principle for enhancing convective heat transfer: its extension and numerical verifications[J]. International Journal of Heat and Mass Transfer, 2002, 45(18): 3849-3856. |
48 | 周俊杰, 陶文铨, 王定标. 场协同原理评价指标的定性分析和定量探讨[J]. 郑州大学学报(工学版), 2006, 27(2): 45-47. |
Zhou J J, Tao W Q, Wang D B. Qualitative analysis and quantitative discussion of index for field synergy principle[J]. Journal of Zhengzhou University (Engineering Science), 2006, 27(2): 45-47. | |
49 | Liu W, Liu Z C, Guo Z Y. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement[J]. Chinese Science Bulletin, 2009, 54(19): 3579-3586. |
50 | Ottino J M. The Kinematics of Mixing: Stretching, Chaos, and Transport[M]. Cambridge: Cambridge University Press, 1989. |
51 | Saatdjian E, Rodrigo A J S, Mota J P B. On chaotic advection in a static mixer[J]. Chemical Engineering Journal, 2012, 187(1): 289-298. |
[1] | Weiqi JIN, Yuerong WU, Xia WANG, Li LI, Su QIU, Pan YUAN, Minghe WANG. Progress in infrared imaging detection technology and domestic equipment for industrial gas leakage in chemical industry parks [J]. CIESC Journal, 2023, 74(S1): 32-44. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[6] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[11] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[12] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[13] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[14] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[15] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||