CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2844-2857.DOI: 10.11949/0438-1157.20220278
• Thermodynamics • Previous Articles Next Articles
Yugong CHEN(),Hao CHEN,Yaosong HUANG()
Received:
2022-03-01
Revised:
2022-05-09
Online:
2022-08-01
Published:
2022-07-05
Contact:
Yaosong HUANG
通讯作者:
黄耀松
作者简介:
陈玉弓(1997—),男,硕士研究生,基金资助:
CLC Number:
Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations[J]. CIESC Journal, 2022, 73(7): 2844-2857.
陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857.
Add to citation manager EndNote|Ris|BibTeX
Peak entry | Chemical name | Chemical structure | Peak entry | Chemical name | Chemical structure |
---|---|---|---|---|---|
1 | methane | 2 | ethane | ||
3 | ethylene | 4 | propane | ||
5 | cyclopropane | 6 | propylene | ||
7 | iso-butane | 8 | n-butane | ||
9 | 1,2-propadiene | 10 | 1-butene | ||
11 | trans-2-butene | 12 | 2-methylpropene | ||
13 | iso-pentane | 14 | cis-2-butene | ||
15 | n-pentane | 16 | 1,3-butadiene |
Table 1 The chemical name and structure of the preset compound in the gas chromatograph
Peak entry | Chemical name | Chemical structure | Peak entry | Chemical name | Chemical structure |
---|---|---|---|---|---|
1 | methane | 2 | ethane | ||
3 | ethylene | 4 | propane | ||
5 | cyclopropane | 6 | propylene | ||
7 | iso-butane | 8 | n-butane | ||
9 | 1,2-propadiene | 10 | 1-butene | ||
11 | trans-2-butene | 12 | 2-methylpropene | ||
13 | iso-pentane | 14 | cis-2-butene | ||
15 | n-pentane | 16 | 1,3-butadiene |
Chemical name | Percentage/% | |||
---|---|---|---|---|
1600 K | 1800 K | 2000 K | 2500 K | |
methane | 3.70 | 49.21 | 48.19 | 19.83 |
acetylene | 0 | 3.17 | 12.05 | 10.34 |
ethylene | 3.70 | 7.94 | 6.02 | 8.62 |
ethane | 3.70 | 0 | 1.20 | 0.86 |
Table 2 The percentages of some major hydrocarbons in the total products obtained by ReaxFF MD simulation at different temperatures
Chemical name | Percentage/% | |||
---|---|---|---|---|
1600 K | 1800 K | 2000 K | 2500 K | |
methane | 3.70 | 49.21 | 48.19 | 19.83 |
acetylene | 0 | 3.17 | 12.05 | 10.34 |
ethylene | 3.70 | 7.94 | 6.02 | 8.62 |
ethane | 3.70 | 0 | 1.20 | 0.86 |
1 | Flikkema E, Bromley S T. A new interatomic potential for nanoscale silica[J]. Chemical Physics Letters, 2003, 378(5/6): 622-629. |
2 | Kammler H K, Pratsinis S E. Scaling-up the production of nanosized SiO2-particles in a double diffusion flame aerosol reactor[J]. Journal of Nanoparticle Research, 1999, 1(4): 467-477. |
3 | Sadasivan S, Rasmussen D H, Chen F P, et al. Preparation and characterization of ultrafine silica[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 132(1): 45-52. |
4 | Feroughi O M, Deng L, Kluge S, et al. Experimental and numerical study of a HMDSO-seeded premixed laminar low-pressure flame for SiO2 nanoparticle synthesis[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1045-1053. |
5 | Yue R L, Meng D, Ni Y, et al. One-step flame synthesis of hydrophobic silica nanoparticles[J]. Powder Technology, 2013, 235: 909-913. |
6 | Chernyshev E A, Krasnova T L, Sergeev A P, et al. Siloxanes as sources of silanones[J]. Russian Chemical Bulletin, 1997, 46(9): 1586-1589. |
7 | Alexander M R, Jones F R, Short R D. Mass spectral investigation of the radio-frequency plasma deposition of hexamethyldisiloxane[J]. The Journal of Physical Chemistry B, 1997, 101(18): 3614-3619. |
8 | Chrystie R S M, Janbazi H, Dreier T, et al. Comparative study of flame-based SiO2 nanoparticle synthesis from TMS and HMDSO: SiO-LIF concentration measurement and detailed simulation[J]. Proceedings of the Combustion Institute, 2019, 37(1): 1221-1229. |
9 | Almond M J, Becerra R, Bowes S J, et al. A mechanistic study of the low pressure pyrolysis of linear siloxanes[J]. Physical Chemistry Chemical Physics: PCCP, 2009, 11(40): 9259-9267. |
10 | McArdle S, Endo S, Aspuru-Guzik A, et al. Quantum computational chemistry[J]. Reviews of Modern Physics, 2020, 92: 015003. |
11 | Dohm S, Bursch M, Hansen A, et al. Semiautomated transition state localization for organometallic complexes with semiempirical quantum chemical methods[J]. Journal of Chemical Theory and Computation, 2020, 16(3): 2002-2012. |
12 | van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
13 | Chenoweth K, van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry. A, 2008, 112(5): 1040-1053. |
14 | Bhoi S, Banerjee T, Mohanty K. Insights on the combustion and pyrolysis behavior of three different ranks of coals using reactive molecular dynamics simulation[J]. RSC Advances, 2016, 6(4): 2559-2570. |
15 | Arvelos S, Abrahão O, Eponina Hori C. ReaxFF molecular dynamics study on the pyrolysis process of cyclohexanone[J]. Journal of Analytical and Applied Pyrolysis, 2019, 141: 104620. |
16 | Xu F, Liu H, Wang Q, et al. ReaxFF-based molecular dynamics simulation of the initial pyrolysis mechanism of lignite[J]. Fuel Processing Technology, 2019, 195: 106147. |
17 | Liu Q, Liu S X, Lv Y D, et al. Atomic-scale insight into the pyrolysis of polycarbonate by ReaxFF-based reactive molecular dynamics simulation[J]. Fuel, 2021, 287: 119484. |
18 | Wang Q D, Wang J B, Li J Q, et al. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane[J]. Combustion and Flame, 2011, 158(2): 217-226. |
19 | Chen B, Wei X Y, Yang Z S, et al. ReaxFF reactive force field for molecular dynamics simulations of lignite depolymerization in supercritical methanol with lignite-related model compounds[J]. Energy & Fuels, 2012, 26(2): 984-989. |
20 | Chen B, Diao Z J, Zhao Y L, et al. A ReaxFF molecular dynamics (MD) simulation for the hydrogenation reaction with coal related model compounds[J]. Fuel, 2015, 154: 114-122. |
21 | van Duin A C T, Strachan A, Stewman S, et al. ReaxFFSiO reactive force field for silicon and silicon oxide systems[J]. The Journal of Physical Chemistry A, 2003, 107(19): 3803-3811. |
22 | Liu L C, Liu Y, Zybin S V, et al. ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials[J]. The Journal of Physical Chemistry A, 2011, 115(40): 11016-11022. |
23 | Liu J, Guo X. ReaxFF molecular dynamics simulation of pyrolysis and combustion of pyridine[J]. Fuel Processing Technology, 2017, 161: 107-115. |
24 | Chenoweth K, Cheung S, van Duin A C T, et al. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field[J]. Journal of the American Chemical Society, 2005, 127(19): 7192-7202. |
25 | Iype E, Hütter M, Jansen A P J, et al. Parameterization of a reactive force field using a Monte Carlo algorithm[J]. Journal of Computational Chemistry, 2013, 34(13): 1143-1154. |
26 | Wood M A, van Duin A C T, Strachan A. Coupled thermal and electromagnetic induced decomposition in the molecular explosive αHMX; a reactive molecular dynamics study[J]. The Journal of Physical Chemistry A, 2014, 118(5): 885-895. |
27 | Chenoweth K, van Duin A C T, Persson P, et al. Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts[J]. The Journal of Physical Chemistry A, 2008, 112(37): 8886. |
28 | Srinivasan S G, van Duin A C T, Ganesh P. Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene[J]. The Journal of Physical Chemistry A, 2015, 119(4): 571-580. |
29 | Newsome D A, Sengupta D, Foroutan H, et al. Oxidation of silicon carbide by O2 and H2O: a ReaxFF reactive molecular dynamics study (part I)[J]. The Journal of Physical Chemistry C, 2012, 116(30): 16111-16121. |
30 | Kulkarni A D, Truhlar D G, Goverapet S S, et al. Oxygen interactions with silica surfaces: coupled cluster and density functional investigation and the development of a new ReaxFF potential[J]. The Journal of Physical Chemistry C, 2013, 117(1): 258-269. |
31 | Soria F, Zhang W W, Paredes-Olivera P A, et al. Si/C/H ReaxFF reactive potential for silicon surfaces grafted with organic molecules[J]. The Journal of Physical Chemistry C, 2018, 122(41): 23515-23527. |
32 | Zhang L Z, Zybin S V, van Duin A C T, et al. Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations[J]. The Journal of Physical Chemistry A, 2009, 113(40): 10619-10640. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[3] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[4] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[5] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
[6] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[7] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[8] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[9] | Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products [J]. CIESC Journal, 2022, 73(8): 3461-3471. |
[10] | Kaihong TANG, Xiaofeng HE, Guiqiu XU, Yang YU, Xiaofeng LIU, Tiejun GE, Ailing ZHANG. Review on combustion behavior and flame retardant research of phenolic foams [J]. CIESC Journal, 2022, 73(8): 3483-3500. |
[11] | Yong’an CHEN, Anning ZHOU, Yunlong LI, Zhiwei SHI, Xinfu HE, Weihong JIAO. Preparation and coal pyrolysis performance of magnetic MgFe2O4 and its core-shell catalysts [J]. CIESC Journal, 2022, 73(7): 3026-3037. |
[12] | Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation [J]. CIESC Journal, 2022, 73(6): 2732-2741. |
[13] | Guanyi CHEN, Tujun TONG, Rui LI, Yanshan WANG, Beibei YAN, Ning LI, Li'an HOU. Influence of pyrolysis time on sludge-derived biochar performance for peroxymonosulfate activation [J]. CIESC Journal, 2022, 73(5): 2111-2119. |
[14] | Xiqiang ZHAO, Jian ZHANG, Shuang SUN, Wenlong WANG, Yanpeng MAO, Jing SUN, Jinglong LIU, Zhanlong SONG. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater [J]. CIESC Journal, 2022, 73(5): 2158-2173. |
[15] | Hang GUO, Wenli HAN, Xiaoling DONG, Wencui LI. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode [J]. CIESC Journal, 2022, 73(4): 1794-1806. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||