CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2819-2834.DOI: 10.11949/0438-1157.20220370

• Reviews and monographs • Previous Articles     Next Articles

Progress in modified preparation and catalytic mechanism of nanocatalysts for hydrogen production from hydrous hydrazine

Xiaoya LIU1(),Jinchao WANG2,Ying LIU1,3,4(),Jinghuan MA1   

  1. 1.School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
    2.Huadian Water Engineering Company Limited, Beijing 100071, China
    3.National Engineering Research Center of Distillation Technology, Tianjin 300072, China
    4.Peiyang Nationl Distillation Technology Corporation Limited, Tianjin 300072, China
  • Received:2022-03-14 Revised:2022-06-22 Online:2022-08-01 Published:2022-07-05
  • Contact: Ying LIU

水合肼制氢纳米催化剂改性制备及机理研究进展

刘晓涯1(),王金超2,刘莹1,3,4(),马敬环1   

  1. 1.天津工业大学环境科学与工程学院,天津 300387
    2.华电水务工程有限公司,北京 100071
    3.精馏技术国家工程研究中心,天津 300072
    4.北洋国家精馏技术工程发展有限公司,天津 300072
  • 通讯作者: 刘莹
  • 作者简介:刘晓涯(1987—),女,硕士,liuxiaoya0927@163.com
  • 基金资助:
    国家自然科学基金项目(51508384)

Abstract:

A safe, efficient and responsive online hydrogen source can effectively accelerate the commercial application of proton exchange membrane fuel cells (PEMFCs), and the development of hydrous hydrazine as a promising online hydrogen source for PEMFCs requires superior catalysts with low cost and high activity. The structure-activity relationship between the alloying modification of the catalyst, the control of the morphology and structure, the loading of the carrier and the addition of strong basic additives and the catalytic performance are summarized. The reasons for the improvement of catalytic performance are discussed from the aspects of the increase of active sites and the improvement of intrinsic activity. Combined with theoretical calculations, the adsorption performance and decomposition path of N2H4 on the surface of different metal catalysts were summarized, and the reasons for the differences in the catalytic activity, H2 selectivity and stability of N2H4 on different active site structures were analyzed. In order to realize the multi-scale precise control of the geometric structure and electronic structure of the specific surface interface structure and active site of the efficient catalyst, it will lay a foundation for the realization of the precise design of the catalyst structure under the guidance of the mechanism.

Key words: hydrogen production, catalysis, nanomaterials, hydrous hydrazine, computational chemistry, DFT

摘要:

安全高效、响应迅速的在线氢源能够有效地加速质子交换膜燃料电池(PEMFCs)的商业化应用,而设计和制备安全高效、成本低廉的催化剂是实现水合肼(N2H4·H2O)催化制氢作为在线氢源的关键技术。总结了催化剂的合金化改性、形貌结构的调控、载体的负载和强碱性助剂的添加等因素和催化性能之间的构效关系,从活性位点的增多和本征活性的提高等方面讨论催化性能提升原因。结合理论计算总结N2H4在不同金属催化剂表面上的吸附性能和分解路径等机理研究,分析了N2H4在不同的活性位点结构上催化活性、H2选择性和稳定性出现差异的原因。以期实现高效催化剂特定表界面结构和活性位点的几何结构和电子结构多尺度精准调控,为实现机理指导下催化剂的结构精准设计奠定基础。

关键词: 制氢, 催化, 纳米材料, 水合肼, 计算化学, DFT

CLC Number: