CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4539-4550.DOI: 10.11949/0438-1157.20220543
• Separation engineering • Previous Articles Next Articles
Houhu ZHANG1(), Xiaoli WU2, Chongchong CHEN1, Jingjing CHEN1, Jingtao WANG1()
Received:
2022-05-01
Revised:
2022-06-16
Online:
2022-11-02
Published:
2022-10-05
Contact:
Jingtao WANG
张后虎1(), 吴晓莉2, 陈冲冲1, 陈静静1, 王景涛1()
通讯作者:
王景涛
作者简介:
张后虎(1997—),男,硕士研究生,1336751282@qq.com
基金资助:
CLC Number:
Houhu ZHANG, Xiaoli WU, Chongchong CHEN, Jingjing CHEN, Jingtao WANG. Preparation of 2D lamellar CD-MOF membranes for accurate separation of mixed solvents[J]. CIESC Journal, 2022, 73(10): 4539-4550.
张后虎, 吴晓莉, 陈冲冲, 陈静静, 王景涛. CD-MOF二维层状膜制备及混合溶剂精准分离研究[J]. 化工学报, 2022, 73(10): 4539-4550.
Add to citation manager EndNote|Ris|BibTeX
分离膜名称 | 分离染料 | 溶剂 | 渗透通量/ (L·m-2·h-1·bar-1) | 截留率/% | 文献 |
---|---|---|---|---|---|
MPCM | |||||
ZIF-8Gf-GOm | 亚甲基蓝 | 水 | 49.8 | 100 | [ |
亚甲基蓝 | |||||
E-MSTF-LTA | |||||
CD-MOF | 84.3 | 99.6 | this work |
Table 1 The details of organic solvent nanofiltration membranes for comparison
分离膜名称 | 分离染料 | 溶剂 | 渗透通量/ (L·m-2·h-1·bar-1) | 截留率/% | 文献 |
---|---|---|---|---|---|
MPCM | |||||
ZIF-8Gf-GOm | 亚甲基蓝 | 水 | 49.8 | 100 | [ |
亚甲基蓝 | |||||
E-MSTF-LTA | |||||
CD-MOF | 84.3 | 99.6 | this work |
1 | 刘建川, 汪建川, 杨建华. 化工生产中常见有机溶剂的危害与安全防治[J]. 化学工程与装备, 2010(11): 131, 152. |
Liu J C, Wang J C, Yang J H. Hazard and safety prevention of common organic solvents in chemical production[J]. Chemical Engineering & Equipment, 2010(11): 131, 152. | |
2 | Poliakoff M, Licence P. Green chemistry[J]. Nature, 2007, 450: 810-812. |
3 | 孙诗瑞, 杨傲, 石涛, 等. 特殊精馏热耦合强化技术研究进展[J]. 化工学报, 2020, 71(10): 4575-4589. |
Sun S R, Yang A, Shi T, et al. Research advances in thermally coupled intensification technology for special distillation[J]. CIESC Journal, 2020, 71(10): 4575-4589. | |
4 | Goodarzi S, Javaran E J, Rahnama M, et al. Techno-economic evaluation of a multi effect distillation system driven by low-temperature waste heat from exhaust flue gases[J]. Desalination, 2019, 460: 64-80. |
5 | 周国莉, 韩项珂, 武文佳, 等. 异质结构g-C3N4@AM层状膜构筑及纳滤性能研究[J]. 化工学报, 2022, 73(2): 941-950. |
Zhou G L, Han X K, Wu W J, et al. Construction heterostructure g-C3N4@AM lamellar membrane and its performance of organic solvent nanofiltation[J]. CIESC Journal, 2022, 73(2): 941-950. | |
6 | Lin G S, Yang J, Mou C Y, et al. Realizing ultrathin silica membranes with straight-through channels for high-performance organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2021, 627: 119224. |
7 | 高克, 许中煌, 洪昱斌, 等. 氧化石墨烯-陶瓷复合纳滤膜的层层自组装制备及其性能[J]. 化工学报, 2017, 68(5): 2177-2185. |
Gao K, Xu Z H, Hong Y B, et al. Layer-by-layer self-assembly preparation and performance of GO-ceramics composite nanofiltration membrane[J]. CIESC Journal, 2017, 68(5): 2177-2185. | |
8 | Wang Q, Wu X, Chen J, et al. Ultrathin and stable organic-inorganic lamellar composite membrane for high-performance organic solvent nanofiltration[J]. Chemical Engineering Science, 2020, 228: 116002. |
9 | Karan S, Jiang Z, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351. |
10 | Li X, Wang J, Bai N, et al. Refinement of pore size at sub-angstrom precision in robust metal-organic frameworks for separation of xylenes[J]. Nature Communications, 2020, 11: 4280. |
11 | Chen J, Wu X, Chen C, et al. Secondary-assembled defect-free MOF membrane via triple-needle electrostatic atomization for highly stable and selective organics permeation[J]. Journal of Membrane Science, 2022, 648: 120382. |
12 | Amo-Ochoa P, Welte L, González-Prieto R, et al. Single layers of a multifunctional laminar Cu (Ⅰ, Ⅱ) coordination polymer[J]. Chemical Communications, 2010, 46(19): 3262-3264. |
13 | Peng Y, Li Y, Ban Y, et al. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation[J]. Angewandte Chemie International Edition, 2017, 129(33): 9889-9893. |
14 | Wang X, Chi C, Zhang K, et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation[J]. Nature Communications, 2017, 8: 14460. |
15 | Ding Y, Chen Y P, Zhang X, et al. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent[J]. Journal of the American Chemical Society, 2017, 139(27): 9136-9139. |
16 | Tsuruoka T, Furukawa S, Takashima Y, et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth[J]. Angewandte Chemie International Edition, 2009, 121(26): 4833-4837. |
17 | Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1): 48-55. |
18 | Cliffe M J, Castillo-Martínez E, Wu Y, et al. Metal-organic nanosheets formed via defect-mediated transformation of a hafnium metal-organic framework[J]. Journal of the American Chemical Society, 2017, 139(15): 5397-5404. |
19 | Holcroft J M, Hartlieb K J, Moghadam P Z, et al. Carbohydrate-mediated purification of petrochemicals[J]. Journal of the American Chemical Society, 2015, 137(17): 5706-5719. |
20 | Chakrabarty R, Mukherjee P S, Stang P J. Supramolecular coordination: self-assembly of finite two-and three-dimensional ensembles[J]. Chemical Reviews, 2011, 111(11): 6810-6918. |
21 | Villalobos L F, Huang T, Peinemann K V. Cyclodextrin films with fast solvent transport and shape-selective permeability[J]. Advanced Materials, 2017, 29(26): 1606641. |
22 | Li J, Gong J L, Zeng G M, et al. Thin-film composite polyester nanofiltration membrane with high flux and efficient dye/salts separation fabricated from precise molecular sieving structure of β-cyclodextrin[J]. Separation and Purification Technology, 2021, 276: 119352. |
23 | Choi K M, Jeon H J, Kang J K, et al. Heterogeneity within order in crystals of a porous metal-organic framework[J]. Journal of the American Chemical Society, 2011, 133(31): 11920-11923. |
24 | Cliffe M J, Wan W, Zou X, et al. Correlated defect nanoregions in a metal-organic framework[J]. Nature Communications, 2014, 5: 4176. |
25 | Wu H, Chua Y S, Krungleviciute V, et al. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption[J]. Journal of the American Chemical Society, 2013, 135(28): 10525-10532. |
26 | Tsuruoka T, Furukawa S, Takashima Y, et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth[J]. Angewandte Chemie International Edition, 2009, 121(26): 4833-4837. |
27 | Li L, Wang J, Zhang Z, et al. Inverse adsorption separation of CO2/C2H2 mixture in cyclodextrin-based metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2018, 11(2): 2543-2550. |
28 | Furukawa Y, Ishiwata T, Sugikawa K, et al. Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks[J]. Angewandte Chemie International Edition, 2012, 124(42): 10718-10721. |
29 | Gonzales R R, Zhang L, Guan K, et al. Aliphatic polyketone-based thin film composite membrane with mussel-inspired polydopamine intermediate layer for high performance osmotic power generation[J]. Desalination, 2021, 516: 115222. |
30 | Hartlieb K J, Holcroft J M, Moghadam P Z, et al. CD-MOF: a versatile separation medium[J]. Journal of the American Chemical Society, 2016, 138(7): 2292-2301. |
31 | Jadhav T, Fang Y, Liu C H, et al. Transformation between 2D and 3D covalent organic frameworks via reversible [2+2] cycloaddition[J]. Journal of the American Chemical Society, 2020, 142(19): 8862-8870. |
32 | Lyu H, Diercks C S, Zhu C, et al. Porous crystalline olefin-linked covalent organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(17): 6848-6852. |
33 | Jadhav T, Fang Y, Patterson W, et al. 2D poly(arylene vinylene) covalent organic frameworks via aldol condensation of trimethyltriazine[J]. Angewandte Chemie International Edition, 2019, 58(39): 13753-13757. |
34 | Smaldone R A, Forgan R S, Furukawa H, et al. Metal-organic frameworks from edible natural products[J]. Angewandte Chemie International Edition, 2010, 49(46): 8630-8634. |
35 | Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568. |
36 | Sang X, Liu D, Song J, et al. High-efficient liquid exfoliation of 2D metal-organic framework using deep-eutectic solvents[J]. Ultrasonics Sonochemistry, 2021, 72: 105461. |
37 | Ding L, Wei Y, Wang Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition, 2017, 56(7): 1825-1829. |
38 | Li G, Qi Y, Lin H, et al. Ni-metal-organic-framework (Ni-MOF) membranes from multiply stacked nanosheets (MSNs) for efficient molecular sieve separation in aqueous and organic solvent[J]. Journal of Membrane Science, 2021, 635: 119470. |
39 | Jian M, Qiu R, Xia Y, et al. Ultrathin water-stable metal-organic framework membranes for ion separation[J]. Science Advances, 2020, 6(23): eaay3998. |
40 | Li Y, Wu Q, Guo X, et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving[J]. Nature Communications, 2020, 11: 599. |
41 | Xu T, Wu B, Hou L, et al. Highly ion-permselective porous organic cage membranes with hierarchical channels[J]. Journal of the American Chemical Society, 2022, 144: 10220-10229. |
42 | Sapkota B, Liang W, VahidMohammadi A, et al. High permeability sub-nanometre sieve composite MoS2 membranes[J]. Nature Communications, 2020, 11: 2747. |
43 | Li G, Qi Y, Lin H, et al. Ni-metal-organic-framework (Ni-MOF) membranes from multiply stacked nanosheets (MSNs) for efficient molecular sieve separation in aqueous and organic solvent[J]. Journal of Membrane Science, 2021, 635: 119470. |
44 | Karan S, Samitsu S, Peng X, et al. Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets[J]. Science, 2012, 335(6067): 444-447. |
45 | 赵胤, 邓广金, 李正, 等. 酸量的调变对烷基转移催化剂性能的影响[J]. 化工科技, 2012, 20(4): 31-33. |
Zhao Y, Deng G J, Li Z, et al. Effects of modification of acid amount on the performance of transalkylation catalyst[J]. Science & Technology in Chemical Industry, 2012, 20(4): 31-33. | |
46 | Wu X, Cui X, Wu W, et al. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes[J]. Angewandte Chemie International Edition, 2019, 131(51): 18695-18700. |
47 | Huang T, Moosa B A, Hoang P, et al. Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration[J]. Nature Communications, 2020, 11: 5882. |
48 | Gao T, Huang L, Li C, et al. Graphene membranes with tuneable nanochannels by intercalating self-assembled porphyrin molecules for organic solvent nanofiltration[J]. Carbon, 2017, 124: 263-270. |
49 | Sun S P, Chan S Y, Xing W, et al. Facile synthesis of dual-layer organic solvent nanofiltration (OSN) hollow fiber membranes[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3019-3023. |
50 | Chen J, Zhang J, Wu X, et al. Accurately controlling the hierarchical nanostructure of polyamide membranes via electrostatic atomization-assisted interfacial polymerization[J]. Journal of Materials Chemistry A, 2020, 8(18): 9160-9167. |
51 | Zhang W H, Yin M J, Zhao Q, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport[J]. Nature Nanotechnology, 2021, 16(3): 337-343. |
52 | Gu B X, Liu Z, Zhang K, et al. Biomimetic asymmetric structural polyamide OSN membranes fabricated via fluorinated polymeric networks regulated interfacial polymerization[J]. Journal of Membrane Science, 2021, 625: 119112. |
53 | Wang Z, Zhu J, Xu S, et al. Graphene-like MOF nanosheets stabilize graphene oxide membranes enabling selective molecular sieving[J]. Journal of Membrane Science, 2021, 633: 119397. |
54 | Fei F, Cseri L, Szekely G, et al. Robust covalently cross-linked polybenzimidazole/graphene oxide membranes for high-flux organic solvent nanofiltration[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 16140-16147. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[3] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[4] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[7] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[8] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[9] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[10] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[11] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[12] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[13] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[14] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[15] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||