CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5324-5342.DOI: 10.11949/0438-1157.20220942
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zhiqiang YU1,2(), Jianze WU1,2, Yatao REN1,2, Mingjian HE1,2, Xikui YU3, Hong QI1,2()
Received:
2022-07-05
Revised:
2022-11-12
Online:
2023-01-17
Published:
2022-12-05
Contact:
Hong QI
余智强1,2(), 吴建泽1,2, 任亚涛1,2, 何明键1,2, 于喜奎3, 齐宏1,2()
通讯作者:
齐宏
作者简介:
余智强(1994—),男,硕士研究生,YU1208@outlook.com
基金资助:
CLC Number:
Zhiqiang YU, Jianze WU, Yatao REN, Mingjian HE, Xikui YU, Hong QI. Calculation model of flow and heat transfer characteristics of printed microchannel heat exchanger[J]. CIESC Journal, 2022, 73(12): 5324-5342.
余智强, 吴建泽, 任亚涛, 何明键, 于喜奎, 齐宏. 印刷板式微通道换热器流动与传热特性的理论模型[J]. 化工学报, 2022, 73(12): 5324-5342.
Add to citation manager EndNote|Ris|BibTeX
序号 | 文献 | 公式 |
---|---|---|
(1) | [ | |
(2) | [ | |
(3) | [ | |
(4) | [ | |
(5) | [ | |
(6) | [ | |
(7) | [ | |
(8) | [ |
Table 1 Nusselt number correlation of laminar heat transfer in microchannels
序号 | 文献 | 公式 |
---|---|---|
(1) | [ | |
(2) | [ | |
(3) | [ | |
(4) | [ | |
(5) | [ | |
(6) | [ | |
(7) | [ | |
(8) | [ |
条件 | 系数 |
---|---|
边界条件 | |
均匀壁温 (UWT) | C1=3.24,C3= 0.409, |
均匀热流 (UHF) | C1=3.86,C3= 0.501, |
Nu类型 | |
局部Nu | C2 = 1,C4 = 1 |
平均Nu | |
UWT | C2 = 3/2,C4 = 2 |
UHF | C2 = 4/3,C4 = 3/2 |
形状参数 | |
上边界 | γ = 1/10 |
下边界 | γ = -3/10 |
Table 2 Correlation coefficient[20, 30]
条件 | 系数 |
---|---|
边界条件 | |
均匀壁温 (UWT) | C1=3.24,C3= 0.409, |
均匀热流 (UHF) | C1=3.86,C3= 0.501, |
Nu类型 | |
局部Nu | C2 = 1,C4 = 1 |
平均Nu | |
UWT | C2 = 3/2,C4 = 2 |
UHF | C2 = 4/3,C4 = 3/2 |
形状参数 | |
上边界 | γ = 1/10 |
下边界 | γ = -3/10 |
序号 | 文献 | 公式 |
---|---|---|
(1) | [ | |
(2) | [ | |
(3) | [ | |
(4) | [ | |
(5) | [ | |
(6) | [ |
Table 3 The Fanning friction coefficient f of the microchannel
序号 | 文献 | 公式 |
---|---|---|
(1) | [ | |
(2) | [ | |
(3) | [ | |
(4) | [ | |
(5) | [ | |
(6) | [ |
文献 | 通道截面 | 当量直径 | Red | 换热工质 | 流动形式 | 研究方法 |
---|---|---|---|---|---|---|
[ | 矩形 | 0.002 m | 400~1300 | 去离子水/去离子水 | 交错流 | 实验 |
[ | 矩形 | 0.003 m | 300~2500 | 空气/水 | 交错流 | 实验 |
[ | 半圆形 | 0.00122 m | 800~2600 | 氦气/氦气 | 准逆流 | 实验+仿真 |
[ | 半圆形 | 0.00122 m | 800~4000 | 氦气/氦气 | 准逆流 | 实验 |
[ | 圆形 | 0.00183 m | 300~2400 | 空气/水 | 交错流 | 实验 |
Table 4 Composition of database and research content
文献 | 通道截面 | 当量直径 | Red | 换热工质 | 流动形式 | 研究方法 |
---|---|---|---|---|---|---|
[ | 矩形 | 0.002 m | 400~1300 | 去离子水/去离子水 | 交错流 | 实验 |
[ | 矩形 | 0.003 m | 300~2500 | 空气/水 | 交错流 | 实验 |
[ | 半圆形 | 0.00122 m | 800~2600 | 氦气/氦气 | 准逆流 | 实验+仿真 |
[ | 半圆形 | 0.00122 m | 800~4000 | 氦气/氦气 | 准逆流 | 实验 |
[ | 圆形 | 0.00183 m | 300~2400 | 空气/水 | 交错流 | 实验 |
系数 | ρ/(kg/m3) | cp /(J/(kg·K)) | μ/(Pa·s) | λ/(W/(m·K)) |
---|---|---|---|---|
r1 | 0 | -1.02757×10-6 | 1.06×10-12 | 0 |
r2 | 0 | 0.001576781 | -1.74792×10-9 | -6.50×10-10 |
r3 | -0.000432735 | -0.877885341 | 1.09093×10-6 | 5.15×10-7 |
r4 | -0.673250175 | 214.3414755 | -0.000307156 | -0.000300975 |
r5 | 1029.120329 | -17433.41997 | 0.033481934 | 0.193770047 |
精度R2 | 0.9997 | 0.9987 | 0.9977 | 0.9984 |
Table 5 Fitting polynomial of aviation fuel RP-3[52-55]
系数 | ρ/(kg/m3) | cp /(J/(kg·K)) | μ/(Pa·s) | λ/(W/(m·K)) |
---|---|---|---|---|
r1 | 0 | -1.02757×10-6 | 1.06×10-12 | 0 |
r2 | 0 | 0.001576781 | -1.74792×10-9 | -6.50×10-10 |
r3 | -0.000432735 | -0.877885341 | 1.09093×10-6 | 5.15×10-7 |
r4 | -0.673250175 | 214.3414755 | -0.000307156 | -0.000300975 |
r5 | 1029.120329 | -17433.41997 | 0.033481934 | 0.193770047 |
精度R2 | 0.9997 | 0.9987 | 0.9977 | 0.9984 |
名称 | 尺寸 |
---|---|
板片厚度 | 0.0008 m |
通道半径 | 0.0006 m |
换热板长 | 0.200 m |
通道节距 | 0.00165 m |
边缘厚度 | 0.008 m |
每层通道数 | 33个 |
通道长度 | 0.220 m |
转折角度 | 40° |
Table 6 Heat exchange plate geometry
名称 | 尺寸 |
---|---|
板片厚度 | 0.0008 m |
通道半径 | 0.0006 m |
换热板长 | 0.200 m |
通道节距 | 0.00165 m |
边缘厚度 | 0.008 m |
每层通道数 | 33个 |
通道长度 | 0.220 m |
转折角度 | 40° |
qv,c/(m3/h) | vin,c/(m/s) | qv,h/(m3/h) | vin,h/(m/s) | Tin,c/℃ | Tin,h/℃ |
---|---|---|---|---|---|
1.0 | 0.4255 | 2.0 | 0.8510 | 40.0 | 160 |
1.5 | 0.6383 | ||||
2.0 | 0.8510 | 2.0 | 0.8510 | 50.0 | 160 |
2.5 | 1.0638 | ||||
3.0 | 1.2765 | 2.0 | 0.8510 | 60.0 | 160 |
3.5 | 1.4893 | ||||
4.0 | 1.7021 | 2.0 | 0.8510 | 70.0 | 160 |
4.5 | 1.9148 | ||||
5.0 | 2.1276 | 2.0 | 0.8510 | 80.0 | 160 |
Table 7 Working condition
qv,c/(m3/h) | vin,c/(m/s) | qv,h/(m3/h) | vin,h/(m/s) | Tin,c/℃ | Tin,h/℃ |
---|---|---|---|---|---|
1.0 | 0.4255 | 2.0 | 0.8510 | 40.0 | 160 |
1.5 | 0.6383 | ||||
2.0 | 0.8510 | 2.0 | 0.8510 | 50.0 | 160 |
2.5 | 1.0638 | ||||
3.0 | 1.2765 | 2.0 | 0.8510 | 60.0 | 160 |
3.5 | 1.4893 | ||||
4.0 | 1.7021 | 2.0 | 0.8510 | 70.0 | 160 |
4.5 | 1.9148 | ||||
5.0 | 2.1276 | 2.0 | 0.8510 | 80.0 | 160 |
1 | Alvarez R C, Sarmiento A, Batista J V C, et al. Entropy generation analysis applied to diffusion-bonded compact heat exchangers[C]//AIAA Aviation 2019 Forum. Reston, Virginia: AIAA, 2019: 3467. |
2 | Sarmiento A, Milanez F H, Mantelli M. Theoretical models for compact printed circuit heat exchangers with straight semicircular channels[J]. Applied Thermal Engineering, 2021, 184: 115435. |
3 | Tuckerman D B, Pease R. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
Kang Y, Liu J H, Zhang L, et al. The research progress and application prospect of the microchannel heat exchanger[J]. Cryogenics & Superconductivity, 2012, 40(6): 45-48. | |
4 | Hesselgreaves J E, Law R, Reay D. Compact Heat Exchangers: Selection, Design and Operation[M]. Butterworth-Heinemann, 2016. |
5 | Aquaro D, Pieve M. High temperature heat exchangers for power plants: performance of advanced metallic recuperators[J]. Applied Thermal Engineering, 2007, 27(2/3): 389-400. |
6 | Ohadi M, Choo K, Dessiatoun S, et al. Next Generation Microchannel Heat Exchangers[M].New York: Springer, 2013. |
7 | 王勋. 微通道冷凝换热实验研究[D]. 上海: 上海交通大学, 2009. |
Wang X. Experiments of condensation heat transfer in micro-channel heat exchanger[D]. Shanghai: Shanghai Jiao Tong University, 2009. | |
8 | Muzychka Y S, Yovanovich M M. Pressure drop in laminar developing flow in noncircular ducts: a scaling and modeling approach[J]. Journal of Fluids Engineering, 2009, 131(11): 111105. |
9 | Hun K I. Experimental and numerical investigations of thermal- hydraulic characteristics for the design of a Printed Circuit Heat Exchanger (PCHE) in HTGRs[D]. Daejeon: Korea Advanced Institute of Science and Technology, 2012. |
10 | Chen M H. Design, fabrication, testing, and modeling of a high-temperature printed circuit heat exchanger[D]. Ohio: The Ohio State University, 2015. |
11 | Chen M H, Sun X D, Richard N, et al. Experimental and numerical study of a printed circuit heat exchanger[J]. Annals of Nuclear Energy, 2016, 97: 221-231. |
12 | Sharifi F, Golkar Narandji M R, Mehravaran K N. Dynamic simulation of plate heat exchangers[J]. International Communications in Heat & Mass Transfer, 1995, 22(2): 213-225. |
13 | Bahrami M, Yovanovich M M, Culham J R. A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section[J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14): 2492-2502. |
14 | Kim Y H, Seo J E, Choi Y J, et al. Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers[J]. Transactions of the Korean Society of Mechanical Engineers B, 2008, 32(12): 915-923. |
15 | Park J H, Kwon J G, Kim T H, et al. Experimental study of a straight channel printed circuit heat exchanger on supercritical CO2 near the critical point with water cooling[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119364. |
16 | Yoon S J, O'Brien J, Sabharwall P, et al. Study on effects of heat loss and channel deformation on thermal-hydraulic performance of semicircular straight channel printed circuit heat exchangers [J]. Journal of Thermal Science and Engineering Applications, 2018, 10(4): 041013. |
17 | Mortean M V V, Paiva K V, Mantelli M B H. Diffusion bonded cross-flow compact heat exchangers: theoretical predictions and experiments[J]. International Journal of Thermal Sciences, 2016, 110: 285-298. |
18 | Stephan K, Preußer P. Wärmeübergang und maximale wärmestromdichte beim behältersieden binärer und ternärer flüssigkeitsgemische[J]. Chemie Ingenieur Technik, 1979, 51(1): 37. |
19 | Mortean M V V, Cisterna L H R, Paiva K V, et al. Thermal and hydrodynamic analysis of a cross-flow compact heat exchanger[J]. Applied Thermal Engineering, 2019, 150: 750-761. |
20 | Sarmiento A P, Soares V, Milanez F H, et al. Heat transfer correlation for circular and non-circular ducts in the transition regime[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119165. |
21 | Churchill S W, Usagi R. A general expression for the correlation of rates of transfer and other phenomena[J]. AIChE Journal, 1972, 18(6): 1121-1128. |
22 | Liu S H, Huang Y P, Wang J F. Theoretical and numerical investigation on the fin effectiveness and the fin efficiency of printed circuit heat exchanger with straight channels[J]. International Journal of Thermal Sciences, 2018, 132: 558-566. |
23 | Kays W M, London A L, Eckert E. Compact heat exchangers[J]. Journal of Applied Mechanics, 1960, 27(2): 377. |
24 | Shah R K, London A L, White F M. Laminar flow forced convection in ducts[J]. Journal of Fluids Engineering, 1980, 102(2): 431-455. |
25 | Saha S K, Baelmans M. A design method for rectangular microchannel counter flow heat exchangers[J]. International Journal of Heat and Mass Transfer, 2014, 74(7): 1-12. |
26 | Lee P S, Garimella S V. Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 3060-3067. |
27 | Grigull U, Tratz H. Thermischer einlauf in ausgebildeter laminarer rohrströmung[J]. International Journal of Heat and Mass Transfer, 1965, 8(5): 669-678. |
28 | Peng X F, Peterson G P. Convective heat transfer and flow friction for water flow in microchannel structures[J]. International Journal of Heat and Mass Transfer, 1996, 39(12): 2599-2608. |
29 | Gnielinski V. On heat transfer in tubes[J]. International Journal of Heat and Mass Transfer, 2013, 63: 134-140. |
30 | Muzychka Y S, Yovanovich M M. Laminar forced convection heat transfer in the combined entry region of non-circular ducts[J]. Journal of Heat Transfer, 2004, 126(1): 54-61. |
31 | Churchill S W. Comprehensive correlating equations for heat, mass and momentum transfer in fully developed flow in smooth tubes[J]. Industrial & Engineering Chemistry Fundamentals, 1977, 16(1): 109-116. |
32 | Rosa P, Karayiannis T G, Collins M W. Single-phase heat transfer in microchannels: the importance of scaling effects[J]. Applied Thermal Engineering, 2009, 29(17/18): 3447-3468. |
33 | Shahsavari S, Tamayol A, Kjeang E, et al. Convective heat transfer in microchannels of noncircular cross sections: an analytical approach[J]. Journal of Heat Transfer, 2012, 134(9): 091701. |
34 | Nellis G, Klein S. Heat Transfer[M]. Cambridge: Cambridge University Press, 2008. |
35 | Sadeghi E, Bahrami M, Djilali N. Estimation of nusselt number in microchannels of arbitrary cross section with constant axial heat flux[J]. Heat Transfer Engineering, 2010, 31(8): 666-674. |
36 | Bennett T D. A historical misperception on calculating the average convection coefficient in tubes with constant wall heat flux[J]. Journal of Heat Transfer, 2019, 141(6): 061702.1-061702.9. |
37 | Kuppan T. Heat Exchanger Design Handbook[M]. Boca Raton: CRC Press, 2013. |
38 | Khalesi J, Sarunac N. Numerical analysis of flow and conjugate heat transfer for supercritical CO2 and liquid sodium in square microchannels[J]. International Journal of Heat and Mass Transfer, 2019, 132: 1187-1199.. |
39 | Scariot V K, Hobold G M, da Silva A K. On the sensitivity to convective heat transfer correlation uncertainties in supercritical fluids[J]. Applied Thermal Engineering, 2018, 145: 123-132. |
40 | Utamura M, Nikitin K, Kato Y. A generalised mean temperature difference method for thermal design of heat exchangers[J]. International Journal of Nuclear Energy Science and Technology, 2008, 4(1): 11-31. |
41 | Guo J F. Design analysis of supercritical carbon dioxide recuperator[J]. Applied Energy, 2016, 164(2-15): 21-27. |
42 | 史美中, 王中铮. 热交换器原理与设计[M]. 南京: 东南大学出版社, 2014. |
Shi M Z, Wang Z Z. Principle and Design of Heat Exchangers[M]. Nanjing: Southeast University Press, 2014. | |
43 | Shah R K, Sekuli D P. Fundamentals of Heat Exchanger Design[M]. New York: John Wiley & Sons, Inc., 2003. |
44 | Fried E, Idel'chik I. Flow Resistance: A Design Guide for Engineers[M]. New York : Hemisphere Pub., 1989. |
45 | Mylavarapu S K. Design, fabrication, performance testing, and modeling of diffusion bonded compact heat exchangers in a high-temperature helium test facility[D]. Ohio: The Ohio State University, 2011. |
46 | 陈卓如. 工程流体力学[M]. 3版. 北京: 高等教育出版社, 2013. |
Chen Z R. Engineering Fluid Mechanics[M]. 3rd ed. Beijing: Higher Education Press, 2013. | |
47 | Kays W M, London A L, Eckert E R G. Compact heat exchangers[J]. Journal of Applied Mechanics, 1960, 27(2): 377. |
48 | Lee H. Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers and Solar Cells[M]. New York: John Wiley & Sons, 2010. |
49 | da Silva R P P, Mortean M V V, de Paiva K V, et al. Thermal and hydrodynamic analysis of a compact heat exchanger produced by additive manufacturing[J]. Applied Thermal Engineering, 2021, 193: 116973. |
50 | Mylavarapu S K, Sun X D, Glosup R E, et al. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility[J]. Applied Thermal Engineering, 2014, 65(1/2): 605-614. |
51 | Bell I H, Wronski J, Quoilin S, et al. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2498-2508. |
52 | Deng H W, Zhang C B, Xu G Q, et al. Density measurements of endothermic hydrocarbon fuel at sub- and supercritical conditions[J]. Journal of Chemical & Engineering Data, 2011, 56(6): 2980-2986. |
53 | Deng H W, Zhang C B, Xu G Q, et al. Viscosity measurements of endothermic hydrocarbon fuel from (298 to 788) K under supercritical pressure conditions[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 358-365. |
54 | Deng H W, Zhu K, Xu G Q, et al. Isobaric specific heat capacity measurement for kerosene RP-3 in the near-critical and supercritical regions[J]. Journal of Chemical & Engineering Data, 2011, 57(2): 263-268. |
55 | Cheng Z, Tao Z, Zhu J, et al. Diameter effect on the heat transfer of supercritical hydrocarbon fuel in horizontal tubes under turbulent conditions[J]. Applied Thermal Engineering, 2018, 134: 39-53. |
56 | 杨九高. 航空润滑油[M]. 北京: 航空工业出版社, 2002. |
Yang J G. Aircraft Engine Lubricating Oil[M]. Beijing: Aviation Industry Press, 2002. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[4] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[5] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[9] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[12] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[13] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[14] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[15] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||