CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5118-5127.DOI: 10.11949/0438-1157.20221012
• Energy and environmental engineering • Previous Articles Next Articles
Junjun GU1,2(), Rui LI1,2, Xingyi WU1,3, Xianqiang TANG1,2(), Yanping HU1,2
Received:
2022-07-20
Revised:
2022-10-12
Online:
2022-12-06
Published:
2022-11-05
Contact:
Xianqiang TANG
顾鋆鋆1,2(), 黎睿1,2, 吴兴熠1,3, 汤显强1,2(), 胡艳平1,2
通讯作者:
汤显强
作者简介:
顾鋆鋆(1998—),女,硕士研究生,gujunjun0108@foxmail.com
基金资助:
CLC Number:
Junjun GU, Rui LI, Xingyi WU, Xianqiang TANG, Yanping HU. Study on the control effect of electrokinetic drainage of pore water on nitrogen release flux at the mud-water interface[J]. CIESC Journal, 2022, 73(11): 5118-5127.
顾鋆鋆, 黎睿, 吴兴熠, 汤显强, 胡艳平. 电动导排孔隙水对泥-水界面氮释放通量的控制效果研究[J]. 化工学报, 2022, 73(11): 5118-5127.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Schematic diagram of the structure and experimental set-up of the pore water conductive drainage assembly①wire protection tube; ②exhaust tube; ③rubber drainage tube; ④upper water insulation cover;⑤organic glass plate with holes;⑥filter cloth fixing strip; ⑦water storage tank; ⑧drain pipe;⑨filter cloth; ⑩EKG electrode plate
条件 | 通量范围/(mg N/m2) | 释放速率范围/(mg N/(m2·h)) | 平均释放速率/(mg N/(m2·h)) | 累计释放通量/(mg N/ m2) |
---|---|---|---|---|
对照 | 79.59~1332.03 | 2.13~26.53 | 9.15 | 6430.85 |
0 V/cm | -363.17~513.62 | -5.04~13.48 | 2.08 | 1461.30 |
0.5 V/cm | -228.00~216.52 | -9.50~6.81 | 0.45 | 282.28 |
Table 1 Statistical parameters of DTN release flux of overlying water under different conditions
条件 | 通量范围/(mg N/m2) | 释放速率范围/(mg N/(m2·h)) | 平均释放速率/(mg N/(m2·h)) | 累计释放通量/(mg N/ m2) |
---|---|---|---|---|
对照 | 79.59~1332.03 | 2.13~26.53 | 9.15 | 6430.85 |
0 V/cm | -363.17~513.62 | -5.04~13.48 | 2.08 | 1461.30 |
0.5 V/cm | -228.00~216.52 | -9.50~6.81 | 0.45 | 282.28 |
氮形态 | 去除率/% | ||||
---|---|---|---|---|---|
0 V/cm | 0.5 V/cm | ||||
中部 | 电极 | 阳极 | 中部 | 阴极 | |
IEF-N | 12.97 | 11.11 | 12.59 | 22.31 | 13.26 |
WAEF-N | -1.86 | 0.77 | 8.16 | 7.46 | 0.88 |
SAEF-N | 6.92 | 7.08 | 3.89 | -12.56 | -35.28 |
SOEF-N | 7.14 | 19.15 | 2.74 | 8.52 | 24.51 |
Table 2 Average removal rate of extracted nitrogen in sediment before and after drainage
氮形态 | 去除率/% | ||||
---|---|---|---|---|---|
0 V/cm | 0.5 V/cm | ||||
中部 | 电极 | 阳极 | 中部 | 阴极 | |
IEF-N | 12.97 | 11.11 | 12.59 | 22.31 | 13.26 |
WAEF-N | -1.86 | 0.77 | 8.16 | 7.46 | 0.88 |
SAEF-N | 6.92 | 7.08 | 3.89 | -12.56 | -35.28 |
SOEF-N | 7.14 | 19.15 | 2.74 | 8.52 | 24.51 |
电压梯度/(V/cm) | 位置 | 导排前有机质含量/% | 导排后有机质 含量/% |
---|---|---|---|
0 | 中部 | 9.03 | 8.29 |
电极 | 9.03 | 7.46 | |
0.5 | 阳极 | 10.96 | 9.22 |
中部 | 10.96 | 8.46 | |
阴极 | 10.96 | 7.48 |
Table 3 Organic matter content of sediment before and after drainage
电压梯度/(V/cm) | 位置 | 导排前有机质含量/% | 导排后有机质 含量/% |
---|---|---|---|
0 | 中部 | 9.03 | 8.29 |
电极 | 9.03 | 7.46 | |
0.5 | 阳极 | 10.96 | 9.22 |
中部 | 10.96 | 8.46 | |
阴极 | 10.96 | 7.48 |
土壤/底泥性质 | 修复目的 | 电极材料及供电方式 | 电压梯度/(V/cm) | 修复时间 | 修复效果 | 能耗/(kWh/m3) | 文献 |
---|---|---|---|---|---|---|---|
湖泊沉积物 | 电渗排水除磷 | EKG组件,12 h On/12 h Off间歇通电 | 0.5 | 6 d | 含水率减少4.6%,总磷含量减少112.65 mg/kg | 102.7 | [ |
沙壤土,含水率38% | 脱除土壤中的Cr | EKG组件,12 h On/12 h Off间歇通电 | 2 | 7 d | 铬除去率为41.98% | 63.13 | [ |
沟渠沉积物,含水率5.8% | 脱除沉积物中六氯苯HCB和锌Zn | 阳极石墨棒,阴极钢管,持续通电 | 0.2~0.4 | 100 d | HCB平均含量由23.6 mg/kg降至21 mg/kg,Zn整体平均含量变化不大 | 563 | [ |
疏浚底泥,含水率38.72% | 电渗排水 | 阳极镀锌铁丝,阴极氯化聚丙烯管,持续通电 | 0.3 | 183 h | 含水率下降至33.43% | 7.16 | [ |
Table 4 Cases of electric remediation of soil
土壤/底泥性质 | 修复目的 | 电极材料及供电方式 | 电压梯度/(V/cm) | 修复时间 | 修复效果 | 能耗/(kWh/m3) | 文献 |
---|---|---|---|---|---|---|---|
湖泊沉积物 | 电渗排水除磷 | EKG组件,12 h On/12 h Off间歇通电 | 0.5 | 6 d | 含水率减少4.6%,总磷含量减少112.65 mg/kg | 102.7 | [ |
沙壤土,含水率38% | 脱除土壤中的Cr | EKG组件,12 h On/12 h Off间歇通电 | 2 | 7 d | 铬除去率为41.98% | 63.13 | [ |
沟渠沉积物,含水率5.8% | 脱除沉积物中六氯苯HCB和锌Zn | 阳极石墨棒,阴极钢管,持续通电 | 0.2~0.4 | 100 d | HCB平均含量由23.6 mg/kg降至21 mg/kg,Zn整体平均含量变化不大 | 563 | [ |
疏浚底泥,含水率38.72% | 电渗排水 | 阳极镀锌铁丝,阴极氯化聚丙烯管,持续通电 | 0.3 | 183 h | 含水率下降至33.43% | 7.16 | [ |
1 | 李宝, 丁士明, 范成新, 等. 滇池福保湾底泥内源氮磷营养盐释放通量估算[J].环境科学,2008, 29(1): 114-120. |
Li B, Ding S M, Fan C X, et al. Estimation of releasing fluxes of sediment nitrogen and phosphorus in Fubao Bay in Dianchi Lake[J]. Environmental Science, 2008, 29(1): 114-120. | |
2 | Yu J H, Fan C X, Zhong J C, et al. Evaluation of in situ simulated dredging to reduce internal nitrogen flux across the sediment-water interface in Lake Taihu, China[J]. Environmental Pollution, 2016, 214: 866-877. |
3 | 于飞. 东江(惠州段)及其支流沉积物氮磷分布状况与覆盖修复技术研究[D]. 广州: 暨南大学, 2012. |
Yu F. Distribution characteristics of phosphorus and nitrogen in surface sediments of the Dongjiang River and its tributaries in Huizhou and capping technology for remediation[D]. Guangzhou: Jinan University, 2012. | |
4 | Kang K, Kim W J, Park S J. Application of activated carbon and crushed concrete as capping material for interrupting the release of nitrogen, phosphorus and organic substance from reservoir sediments[J]. Journal of the Korean Society of Agricultural Engineers, 2016, 58(2): 1-9. |
5 | 范成新, 张路, 王建军, 等. 湖泊底泥疏浚对内源释放影响的过程与机理[J]. 科学通报, 2004, 49(15): 1523-1528. |
Fan C X, Zhang L, Wang J J, et al. Process and mechanism of the effect of lake sediment dredging on endogenous release [J]. Chinese Science Bulletin, 2004, 49(15): 1523-1528. | |
6 | Liu C, Zhong J C, Wang J J, et al. Fifteen-year study of environmental dredging effect on variation of nitrogen and phosphorus exchange across the sediment-water interface of an urban lake[J]. Environmental Pollution, 2016, 219: 639-648. |
7 | 陈重军, 潘钰伟, 谢嘉玮, 等. 河流污染底泥原位覆盖材料及其应用研究进展[J]. 环境工程技术学报, 2022, 12(1): 100-109. |
Chen C J, Pan Y W, Xie J W, et al. Research progress of in situ covering materials for river polluted sediment and their applications [J]. Journal of Environmental Engineering Technology, 2022, 12(1): 100-109. | |
8 | Booij K, Hoedemaker J R, Bakker J F. Dissolved PCBs, PAHs, and HCB in pore waters and overlying waters of contaminated harbor sediments[J]. Environmental Science & Technology, 2003, 37(18): 4213-4220. |
9 | 胡俊, 刘永定, 刘剑彤. 滇池沉积物间隙水中氮、磷形态及相关性的研究[J]. 环境科学学报, 2005, 25(10): 1391-1396. |
Hu J, Liu Y D, Liu J T. Studying on the form and the relativity of nitrogen and phosphorus in the pore water of sediment in Dianchi Lake[J]. Acta Scientiae Circumstantiae, 2005, 25(10): 1391-1396. | |
10 | Li S S, Zheng C Q, Yang S Q, et al. Reduction of nitrogen and phosphorus loading from polluted sediment by electrolysis[J]. Ecological Engineering, 2021, 159: 106088. |
11 | 罗启仕, 王慧, 张锡辉, 等. 土壤中硝酸盐在非均匀电动力学作用下的迁移与转化[J]. 环境科学, 2004, 25(2): 98-103. |
Luo Q S, Wang H, Zhang X H, et al. Movement and transformation of nitrate in soil by non-uniform electrokinetics[J]. Environmental Science, 2004, 25(2): 98-103. | |
12 | 吴兴熠, 黎睿, 汤显强, 等. 电动导排间隙水脱除底泥内源氮的性能[J]. 中国环境科学, 2021, 41(3): 1208-1218. |
Wu X Y, Li R, Tang X Q, et al. Performance of separating sediment endogenous nitrogen via electrokinetic drainage of pore water[J]. China Environmental Science, 2021, 41(3): 1208-1218. | |
13 | 胡天怡, 胡悦, 赵立坤, 等. 黑臭底泥的电渗脱水特性及污染物迁移规律[J]. 环境科学与技术, 2020, 43(10): 103-110. |
Hu T Y, Hu Y, Zhao L K, et al. Study on dewatering characteristics and pollutant migration of black-odorous river sediments during electroosmotic operation[J]. Environmental Science & Technology, 2020, 43(10): 103-110. | |
14 | 赖江钿, 程明双, 余光伟, 等. 利用电动修复技术原位氧化去除黑臭底泥还原性污染物的室内模拟实验[J]. 环境工程学报, 2020, 14(7): 1779-1788. |
Lai J T, Cheng M S, Yu G W, et al. Indoor simulation experiment of in situ oxidation removing the reductive pollutants in black-odorous river sediment with electrokinetic remediation[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1779-1788. | |
15 | 汤显强, 李青云, 胡艳平, 等. 一种基于孔隙水导排的河湖污染底泥原位减量除污装置: 207671889U[P]. 2018-07-31. |
Tang X Q, Li Q Y, Hu Y P, et al. Bed mud normal position decrement scrubbing device is polluted in river lake based on hole water drainage guide: 207671889U[P]. 2018-07-31. | |
16 | 王圣瑞. 湖泊沉积物—水界面过程——基本理论与常用测定方法[M]. 北京: 科学出版社, 2014. |
Wang S R. Sediment-water Interface Process of Lakes: Basic Theory and Common Measurement Methods [M]. Beijing: Science Press, 2014. | |
17 | 蔡传伦. 电动修复技术去除太湖沉积物中氮磷污染的研究[D]. 合肥: 合肥工业大学, 2018. |
Cai C L. Study on electrokinetic remediation technology to remove N and P pollution from sediments in Taihu Lake[D]. Hefei: Hefei University of Technology, 2018. | |
18 | 黄琨, 万军伟, 陈刚, 等. 非饱和土的抗剪强度与含水率关系的试验研究[J]. 岩土力学, 2012, 33(9): 2600-2604. |
Huang K, Wan J W, Chen G, et al. Testing study of relationship between water content and shear strength of unsaturated soils[J]. Rock and Soil Mechanics, 2012, 33(9): 2600-2604. | |
19 | 吴辉, 胡黎明. 考虑电导率变化的电渗固结模型[J]. 岩土工程学报, 2013, 35(4): 734-738. |
Wu H, Hu L M. Numerical simulation of electro-osmosis consolidation considering variation of electrical conductivity[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 734-738. | |
20 | Wen D D, Fu R B, Li Q. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: a review[J]. Journal of Hazardous Materials, 2021, 401: 123345. |
21 | Virkutyte J, Sillanpää M, Latostenmaa P. Electrokinetic soil remediation—critical overview[J]. Science of the Total Environment, 2002, 289(1/2/3): 97-121. |
22 | Kim K W, Kim Y J, Kim I T, et al. Electrochemical conversion characteristics of ammonia to nitrogen[J]. Water Research, 2006, 40(7): 1431-1441. |
23 | 周睿, 袁旭音, Marip Ja Bawk, 等. 不同湖泊入湖河流沉积物可转化态氮的空间分布及其影响因素[J].环境科学, 2018, 39(3): 1122-1128. |
Zhou R, Yuan X Y, Bawk M, et al. Spatial distributions of transferable nitrogen forms and influencing factors in sediments from inflow rivers in different lake basins[J]. Environmental Science, 2018, 39(3): 1122-1128. | |
24 | 吕晓霞, 宋金明, 袁华茂, 等. 南黄海表层沉积物中氮的潜在生态学功能[J]. 生态学报, 2004(8): 1635-1643. |
Lü X X, Song J M, Yuan H M, et al. The potential ecological roles of nitrogen in the surface sediments of the South Yellow Sea[J]. Acta Ecologica Sinica, 2004, 24(8): 1635-1643. | |
25 | Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, et al. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications[J]. Applied Catalysis B: Environmental, 2018, 236: 546-568. |
26 | 赵宝刚, 张夏彬, 昝逢宇, 等. 不同湖泊表层沉积物氮形态的分布特征与影响因素[J]. 中国环境科学, 2021, 41(2): 837-847. |
Zhao B G, Zhang X B, Zan F Y, et al. Distribution characteristics and influencing factors of nitrogen forms in surface sediments of different lakes[J]. China Environmental Science, 2021, 41(2): 837-847. | |
27 | 李俊国, 王凡, 冯艳平, 等. 氢气还原海绵铁去除水体中硝酸盐的研究[J]. 环境科学与技术, 2010, 33(12): 76-80. |
Li J G, Wang F, Feng Y P, et al. Nitrate removal from water by spherical sponge iron prepared by H2 reduction[J]. Environmental Science & Technology, 2010, 33(12): 76-80. | |
28 | 姜人源, 朱顺妮, 王忠铭, 等. 不同pH条件下小球藻氨氮处理及生物质生产能力[J]. 环境工程, 2021, 39(9): 42-47. |
Jiang R Y, Zhu S N, Wang Z M, et al. Research on Chlorella’s ammonia nitrogen treatment ability and biomass production under different pH conditions[J]. Environmental Engineering, 2021, 39(9): 42-47. | |
29 | Zhao X C, Tan X B, Yang L B, et al. Cultivation of Chlorella pyrenoidosa in anaerobic wastewater: the coupled effects of ammonium, temperature and pH conditions on lipids compositions[J]. Bioresource Technology, 2019, 284: 90-97. |
30 | 任丽娟, 林敏, 董仁杰, 等. 厌氧消化灭活畜禽粪污中病原菌的研究进展[J]. 中国沼气, 2021, 39(6): 22-31. |
Ren L J, Lin M, Dong R J, et al. Pathogen inactivation of livestock and poultry manure through anaerobic digestion: a review[J]. China Biogas, 2021, 39(6): 22-31. | |
31 | Reyter D, Bélanger D, Roué L. Nitrate removal by a paired electrolysis on copper and Ti/IrO2 coupled electrodes - Influence of the anode/cathode surface area ratio[J]. Water Research, 2010, 44(6): 1918-1926. |
32 | 庄源益, 戴树桂, 张明顺. 水中氨氮挥发影响因素探讨[J]. 环境化学, 1995, 14(4): 343-346. |
Zhuang Y Y, Dai S G, Zhang M S. A preliminary study on factors influened the volatilization of ammonia from water[J]. Environmental Chemistry, 1995, 14(4): 343-346. | |
33 | 沈叔云, 何岩, 黄民生, 等. 曝气扰动对泥水界面硝化-反硝化性能的影响[J]. 环境工程学报, 2014, 8(10): 4153-4158. |
Shen S Y, He Y, Huang M S, et al. Effects of aerating disturbances on nitrification-denitrification at sediment-water interface[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4153-4158. | |
34 | Kim W S, Jeon E K, Jung J M, et al. Field application of electrokinetic remediation for multi-metal contaminated paddy soil using two-dimensional electrode configuration[J]. Environmental Science and Pollution Research International, 2014, 21(6): 4482-4491. |
35 | Tang X Q, Li R, Han D, et al. Impacts of electrokinetic isolation of phosphorus through pore water drainage on sediment phosphorus storage dynamics[J]. Environmental Pollution, 2020, 266: 115210. |
36 | 刘欢, 孔维苇, 王晓锋, 等. 重庆梁滩河表层沉积物氮形态时空特征及影响因素[J]. 水土保持学报, 2019, 33(6): 332-341. |
Liu H, Kong W W, Wang X F, et al. Temporal and spatial characteristics and influencing factors of nitrogen morphology in surface sediments of Liangtan river,Chongqing[J]. Journal of Soil and Water Conservation, 2019, 33(6): 332-341. | |
37 | 李泰平, 袁松虎, 林莉, 等. 电动力学修复对沉积物理化性质的影响[J]. 环境科学与技术, 2010, 33(2): 57-60, 67. |
Li T P, Yuan S H, Lin L, et al. Examining changes of physico-chemical characteristics of contaminated sediment after electrokinetic remediation[J]. Environmental Science & Technology, 2010, 33(2): 57-60, 67. | |
38 | Mohamedelhassan E, Shang J Q. Effects of electrode materials and current intermittence in electro-osmosis[J]. Ground Improvement, 2001, 5(1): 3-11. |
39 | Tang X Q, Li Q Y, Wang Z H, et al. In situ electrokinetic isolation of cadmium from paddy soil through pore water drainage: effects of voltage gradient and soil moisture[J]. Chemical Engineering Journal, 2018, 337: 210-219. |
40 | Li T P, Yuan S H, Wan J Z, et al. Pilot-scale electrokinetic movement of HCB and Zn in real contaminated sediments enhanced with hydroxypropyl-β-cyclodextrin[J]. Chemosphere, 2009, 76(9): 1226-1232. |
41 | 陈雄峰, 荆一凤, 吕鑑, 等. 电渗法对太湖环保疏浚底泥脱水干化研究[J]. 环境科学研究, 2006, 19(5): 54-58. |
Chen X F, Jing Y F, Lü J, et al. The research of environmental dredged sludge dewatering in Taihu Lake by electro-osmotic[J]. Research of Environmental Sciences, 2006, 19(5): 54-58. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Wenxiang NI, Jing ZHAO, Bo LI, Xiaolin WEI, Dongyin WU, Di LIU, Qiang WANG. Study on waste heat boiler ash deposition characteristics in sensible heat recovery process of converter gas [J]. CIESC Journal, 2023, 74(8): 3485-3493. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[9] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
[10] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[11] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[12] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[13] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[14] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[15] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||