CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5564-5571.DOI: 10.11949/0438-1157.20221152
• Energy and environmental engineering • Previous Articles Next Articles
Yan LI1(), Jinhui CAO1, Yuanyi LIU1, Houzhang TAN2()
Received:
2022-08-17
Revised:
2022-11-24
Online:
2023-01-17
Published:
2022-12-05
Contact:
Houzhang TAN
通讯作者:
谭厚章
作者简介:
李艳(1984—),女,博士,高级工程师,175608795@qq.com
基金资助:
CLC Number:
Yan LI, Jinhui CAO, Yuanyi LIU, Houzhang TAN. Characterization and reactivity of soot from biomass pyrolysis in a fixed bed reactor[J]. CIESC Journal, 2022, 73(12): 5564-5571.
李艳, 曹进辉, 刘原一, 谭厚章. 生物质固定床热解碳烟结构特征及反应活性[J]. 化工学报, 2022, 73(12): 5564-5571.
Add to citation manager EndNote|Ris|BibTeX
碳烟样品 | 晶面间距d002/nm | 堆垛高度Lc/nm | 片层直径La/nm | 晶层数目N |
---|---|---|---|---|
麦秆-1100℃ | 0.3568 | 1.84 | 3.09 | 6.2 |
麦秆-1200℃ | 0.3522 | 1.97 | 3.24 | 6.7 |
木屑-1100℃ | 0.3533 | 2.04 | 3.47 | 6.7 |
木屑-1200℃ | 0.3523 | 1.93 | 4.28 | 6.5 |
Table 1 Crystal structure parameters of soot samples from different formed temperatures
碳烟样品 | 晶面间距d002/nm | 堆垛高度Lc/nm | 片层直径La/nm | 晶层数目N |
---|---|---|---|---|
麦秆-1100℃ | 0.3568 | 1.84 | 3.09 | 6.2 |
麦秆-1200℃ | 0.3522 | 1.97 | 3.24 | 6.7 |
木屑-1100℃ | 0.3533 | 2.04 | 3.47 | 6.7 |
木屑-1200℃ | 0.3523 | 1.93 | 4.28 | 6.5 |
碳烟样品 | Ti/℃ | Tp/℃ | Tf/℃ | Wmax/(%/min) | Wmean/(%/min) | MC/% | MK/% | Mr/% |
---|---|---|---|---|---|---|---|---|
麦秆-1100℃ | 530.6 | 575.2 | 593.4 | -13.80 | -6.58 | 87.15 | 9.01 | 3.84 |
麦秆-1200℃ | 532.5 | 607.1 | 622.6 | -9.94 | -6.06 | 87.89 | 6.50 | 5.61 |
木屑-1100℃ | 591.7 | 647.1 | 675.6 | -12.06 | -6.31 | 90.48 | 0 | 9.52 |
木屑-1200℃ | 615.6 | 670.0 | 703.5 | -11.36 | -6.04 | 95.05 | 0 | 4.95 |
Table 2 Characteristic parameters from soot oxidation curves
碳烟样品 | Ti/℃ | Tp/℃ | Tf/℃ | Wmax/(%/min) | Wmean/(%/min) | MC/% | MK/% | Mr/% |
---|---|---|---|---|---|---|---|---|
麦秆-1100℃ | 530.6 | 575.2 | 593.4 | -13.80 | -6.58 | 87.15 | 9.01 | 3.84 |
麦秆-1200℃ | 532.5 | 607.1 | 622.6 | -9.94 | -6.06 | 87.89 | 6.50 | 5.61 |
木屑-1100℃ | 591.7 | 647.1 | 675.6 | -12.06 | -6.31 | 90.48 | 0 | 9.52 |
木屑-1200℃ | 615.6 | 670.0 | 703.5 | -11.36 | -6.04 | 95.05 | 0 | 4.95 |
17 | 李艳, 谭厚章, 王学斌, 等.生物质高温热解气、液、固三相产物及碳烟生成特性[J].西安交通大学学报, 2018, 52(1): 61-68. |
Li Y, Tan H Z, Wang X B, et al. Formation mechanisms of three-phase products and soot during the pyrolysis of biomass at high temperatures[J]. Journal of Xi'an Jiaotong University, 2018, 52(1): 61-68. | |
18 | Ma J L, Fletcher T H, Webb B W. Conversion of coal tar to soot during coal pyrolysis in a post-flame environment[J]. Symposium (International) on Combustion, 1996, 26(2): 3161-3167. |
19 | Fletcher T H, Ma J L, Rigby J R, et al. Soot in coal combustion systems[J]. Progress in Energy and Combustion Science, 1997, 23(3): 283-301. |
20 | Kurian V, Mahapatra N, Wang B, et al. Analysis of soot formed during the pyrolysis of athabasca oil sand asphaltenes[J]. Energy & Fuels, 2015, 29(10): 6823-6831. |
21 | 张炜, 宋崇林, 王林, 等. 柴油机燃烧过程中微粒微观结构的变化规律[J].内燃机学报.2010, 28(3): 221-227. |
Zhang W, Song C L, Wang L, et al. Microstructure histories of in-cylinder particulates from a diesel engine[J]. Transactions of CSICE, 2010, 28(3): 221-227. | |
22 | 宋崇林, 李博, 马翔, 等.火焰温度对碳烟微观结构和氧化活性的影响[J].天津大学学报(自然科学与工程技术版), 2015(6): 535-541. |
Song C L, Li B, Ma X, et al. Effect of flame temperature on the microstructure and oxidation reactivity of soot particles[J]. Journal of Tianjin University(Science and Technology), 2015(6): 535-541. | |
23 | Ishiguro T, Takatori Y, Akihama K. Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell[J]. Combustion and Flame, 1997, 108(1/2): 231-234. |
24 | 王亚军.润滑油对柴油机颗粒物氧化反应性影响的实验研究[D].天津: 天津大学, 2020. |
Wang Y J. Experimental study on effect of lubricating oil on the oxidation reactivity of diesel particles [D]. Tianjin: Tianjin University, 2020. | |
25 | 崔鹏, 刘军恒, 谈秉乾, 等.气氛对柴油机碳烟热老化及其理化特性的影响[J].西安交通大学学报, 2022, 56(4): 23-31. |
1 | Wang H. Formation of nascent soot and other condensed-phase materials in flames[J]. Proceedings of the Combustion Institute, 2011, 33(1): 41-67. |
2 | Richter H, Howard J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 565-608. |
3 | 蒋好, 朱有健, 邵敬爱, 等.生物质热解碳烟的研究进展[J].化工进展, 2021, 40(10): 5772-5785. |
Jiang H, Zhu Y J, Shao J A, et al. Review on soot formation during biomass pyrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5772-5785. | |
4 | He Q, Guo Q H, Umeki K, et al. Soot formation during biomass gasification: a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110710. |
5 | Umeki K, Häggström G, Bach-Oller A, et al. Reduction of tar and soot formation from entrained-flow gasification of woody biomass by alkali impregnation[J]. Energy & Fuels, 2017, 31(5): 5104-5110. |
6 | Chhiti Y, Peyrot M, Salvador S. Soot formation and oxidation during bio-oil gasification: experiments and modeling[J]. Journal of Energy Chemistry, 2013, 22(5): 701-709. |
7 | Wilson J M, Baeza-Romero M T, Jones J M, et al. Soot formation from the combustion of biomass pyrolysis products and a hydrocarbon fuel, n-decane: an aerosol time of flight mass spectrometer (ATOFMS) study[J]. Energy & Fuels, 2013, 27(3): 1668-1678. |
8 | Feng D D, Guo D W, Shang Q, et al. Mechanism of biochar-gas-tar-soot formation during pyrolysis of different biomass feedstocks: effect of inherent metal species[J].Fuel, 2021, 293: 120409. |
9 | Trubetskaya A, Jensen P A, Jensen A D, et al. Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures[J]. Applied Energy, 2016, 171: 468-482. |
10 | Trubetskaya A, Brown A, Tompsett G A, et al. Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols[J]. Applied Energy, 2018, 212: 1489-1500. |
11 | Septien S, Valin S, Peyrot M, et al. Characterization of char and soot from millimetric wood particles pyrolysis in a drop tube reactor between 800°C and 1400°C[J]. Fuel, 2014, 121: 216-224. |
12 | Wiinikka H, Toth P, Jansson K, et al. Particle formation during pressurized entrained flow gasification of wood powder: effects of process conditions on chemical composition, nanostructure, and reactivity[J]. Combustion and Flame, 2018, 189: 240-256. |
25 | Cui P, Liu J H, Tan B Q . et al. Effect of different atmospheres on the thermal aging and physicochemical characteristics of diesel carbon black[J]. Journal of Xi'an Jiaotong University, 2022, 56(4): 23-31. |
26 | Wang L, Song C L, Song J O, et al. Aliphatic C—H and oxygenated surface functional groups of diesel in-cylinder soot: characterizations and impact on soot oxidation behavior[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3099-3106. |
27 | Apicella B, PréP, AlfèM, et al. Soot nanostructure evolution in premixed flames by high resolution electron transmission microscopy (HRTEM)[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1895-1902. |
28 | Wang C A, Huddle T, Huang C H, et al. Improved quantification of curvature in high-resolution transmission electron microscopy lattice fringe micrographs of soots[J]. Carbon, 2017, 117: 174-181. |
29 | Qin K, Lin W G, Fæster S, et al. Characterization of residual particulates from biomass entrained flow gasification[J]. Energy & Fuels, 2013, 27(1): 262-270. |
13 | 李艳, 谭厚章, 刘原一, 等.热解温度与碱金属对生物质热解碳烟氧化活性的影响[J].西安交通大学学报, 2020, 54(8): 20-26. |
Li Y, Tan H Z, Liu Y Y, et al. Influences of formation temperature and potassium salts on oxidation reactivity of soot from biomass pyrolysis[J]. Journal of Xi'an Jiaotong University, 2020, 54(8): 20-26. | |
14 | Vander Wal R L, Tomasek A J. Soot oxidation: dependence upon initial nanostructure[J]. Combustion and Flame, 2003, 134(1/2): 1-9. |
15 | Müller J O, Su D S, Jentoft R E, et al. Morphology-controlled reactivity of carbonaceous materials towards oxidation[J]. Catalysis Today, 2005, 102/103: 259-265. |
16 | AlfèM, Apicella B, Barbella R, et al. Structure-property relationship in nanostructures of young and mature soot in premixed flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 697-704. |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[4] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[5] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[6] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[7] | Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors [J]. CIESC Journal, 2023, 74(4): 1680-1692. |
[8] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[9] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[10] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[11] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[12] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[13] | Dongwang ZHANG, Hairui YANG, Tuo ZHOU, Zhong HUANG, Shiyuan LI, Man ZHANG. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler [J]. CIESC Journal, 2022, 73(8): 3731-3738. |
[14] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
[15] | Lijing HUANG, Jijiao HUANG, Penghui LI, Zhinuo LIU, Kangjie JIANG, Wenjuan WU. Hydroxypropyl sulfomethylation modification of lignin and its effect on cellulase hydrolysis [J]. CIESC Journal, 2022, 73(7): 3232-3239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||