CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5305-5313.DOI: 10.11949/0438-1157.20221230
• Thermodynamics • Previous Articles Next Articles
Meng HUO(), Xiaowan PENG, Jin ZHAO, Qiuwei MA, Chun DENG(), Bei LIU, Guangjin CHEN
Received:
2022-09-09
Revised:
2022-11-08
Online:
2023-01-17
Published:
2022-12-05
Contact:
Chun DENG
霍猛(), 彭晓婉, 赵金, 马秋伟, 邓春(), 刘蓓, 陈光进
通讯作者:
邓春
作者简介:
霍猛(1998—),男,硕士研究生,qq1170915991@163.com
基金资助:
CLC Number:
Meng HUO, Xiaowan PENG, Jin ZHAO, Qiuwei MA, Chun DENG, Bei LIU, Guangjin CHEN. COSMO-RS based solvent screening and H2/CO separation experiments for CO absorption by ionic liquids[J]. CIESC Journal, 2022, 73(12): 5305-5313.
霍猛, 彭晓婉, 赵金, 马秋伟, 邓春, 刘蓓, 陈光进. 基于COSMO-RS的离子液体吸收CO的溶剂筛选及H2/CO分离实验[J]. 化工学报, 2022, 73(12): 5305-5313.
名称 | 纯度/ %(mol) | 供应商 |
---|---|---|
1-乙基咪唑盐酸盐 | 98 | 河南普赛化工产品有限公司 |
氯化亚铜 | 97 | 上海阿拉丁生化科技股份有限公司 |
H2 | 99.999 | 北京氦普北分气体工业有限公司 |
CO | 99.999 | 北京氦普北分气体工业有限公司 |
H2/CO混合气 | 99.999 | 北京氦普北分气体工业有限公司 |
Table 1 Material name, purity and supplier
名称 | 纯度/ %(mol) | 供应商 |
---|---|---|
1-乙基咪唑盐酸盐 | 98 | 河南普赛化工产品有限公司 |
氯化亚铜 | 97 | 上海阿拉丁生化科技股份有限公司 |
H2 | 99.999 | 北京氦普北分气体工业有限公司 |
CO | 99.999 | 北京氦普北分气体工业有限公司 |
H2/CO混合气 | 99.999 | 北京氦普北分气体工业有限公司 |
T/K | PE/MPa | ϕ | 气体 组分 | Sv/(mol·L-1) | Sc/(mol·bar-1·L-1) | β |
---|---|---|---|---|---|---|
293.15 | 2.1 | 77.75 | CO | 0.0312 | 0.8196 | 109.29 |
H2 | 0.1579 | 0.0075 | 0.0092 | |||
101.88 | CO | 0.0313 | 0.3982 | 82.12 | ||
H2 | 0.0966 | 0.0048 | 0.0122 |
Table 2 Experimental results of CO/H2 gas mixture separation with 1%(mol) CO
T/K | PE/MPa | ϕ | 气体 组分 | Sv/(mol·L-1) | Sc/(mol·bar-1·L-1) | β |
---|---|---|---|---|---|---|
293.15 | 2.1 | 77.75 | CO | 0.0312 | 0.8196 | 109.29 |
H2 | 0.1579 | 0.0075 | 0.0092 | |||
101.88 | CO | 0.0313 | 0.3982 | 82.12 | ||
H2 | 0.0966 | 0.0048 | 0.0122 |
1 | Umana B, Zhang N, Smith R. Development of vacuum residue hydrodesulphurization-hydrocracking models and their integration with refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2016, 55(8): 2391-2406. |
2 | Kan T, Sun X Y, Wang H Y, et al. Production of gasoline and diesel from coal tar via its catalytic hydrogenation in serial fixed beds[J]. Energy & Fuels, 2012, 26(6): 3604-3611. |
3 | Garba M D, Galadima A. Catalytic hydrogenation of hydrocarbons for gasoline production[J]. Journal of Physical Science, 2018, 29(2): 153-176. |
4 | Dujjanutat P, Kaewkannetra P. Production of bio-hydrogenated kerosene by catalytic hydrocracking from refined bleached deodorised palm/palm kernel oils[J]. Renewable Energy, 2020, 147: 464-472. |
5 | Sun Y F, Li C S, Zhang A M. Preparation of Ni/CNTs catalyst with high reducibility and their superior catalytic performance in benzene hydrogenation[J]. Applied Catalysis A: General, 2016, 522: 180-187. |
6 | Wee J H. Applications of proton exchange membrane fuel cell systems[J]. Renewable and Sustainable Energy Reviews, 2007, 11(8): 1720-1738. |
7 | El Hajj Chehade A M, Daher E A, Assaf J C, et al. Simulation and optimization of hydrogen production by steam reforming of natural gas for refining and petrochemical demands in Lebanon[J]. International Journal of Hydrogen Energy, 2020, 45(58): 33235-33247. |
8 | Turner J, Sverdrup G, Mann M K, et al. Renewable hydrogen production[J]. International Journal of Energy Research, 2008, 32(5): 379-407. |
9 | Li Y J, Luo H. Integration of light hydrocarbons cryogenic separation process in refinery based on LNG cold energy utilization[J]. Chemical Engineering Research and Design, 2015, 93: 632-639. |
10 | Zhu X C, Shi Y X, Li S, et al. Elevated temperature pressure swing adsorption process for reactive separation of CO/CO2 in H2-rich gas[J]. International Journal of Hydrogen Energy, 2018, 43(29): 13305-13317. |
11 | Wu F, Zhao Q H, Tao L F, et al. Solubility of carbon monoxide and hydrogen in methanol and methyl formate: 298—373 K and 0.3—3.3 MPa[J]. Journal of Chemical & Engineering Data, 2019, 64(12): 5609-5621. |
12 | Yang T X, Chung T S. High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor[J]. International Journal of Hydrogen Energy, 2013, 38(1): 229-239. |
13 | 刘佳佳, 付雪, 许映杰. 离子液体吸收分离一氧化碳的研究进展[J].化工学报,2020, 71(1):138-147. |
Liu J J, Fu X, Xu Y J. Progress on carbon monoxide removal using ionic liquids [J]. CIESC Journal, 2020, 71(1): 138-147. | |
14 | Ohlin C A, Dyson P J, Laurenczy G. Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation[J]. Chemical Communications, 2004(9): 1070-1071. |
15 | Raeissi S, Florusse L J, Peters C J. Purification of flue gas by ionic liquids: carbon monoxide capture in[bmim][Tf 2N][J]. AIChE Journal, 2013, 59(10): 3886-3891. |
16 | Lei Z G, Shen P, Dai C N. Solubility of CO in the mixture of ionic liquid and ZIF: an experimental and modeling study[J]. Journal of Chemical & Engineering Data, 2016, 61(2): 846-855. |
17 | Tao D J, Chen F F, Tian Z Q, et al. Highly efficient carbon monoxide capture by carbanion-functionalized ionic liquids through C-site interactions[J]. Angewandte Chemie, 2017, 129(24): 6947-6951. |
18 | Shmukler L E, Fedorova I V, Fadeeva Y A, et al. Alkylimidazolium protic ionic liquids: structural features and physicochemical properties[J]. ChemPhysChem, 2022, 23(4): e202100772. |
19 | Shmukler L E, Fedorova I V, Fadeeva Y A, et al. The physicochemical properties and structure of alkylammonium protic ionic liquids of R n H4- n NX (n=1—3) family. A mini-review[J]. Journal of Molecular Liquids, 2021, 321: 114350. |
20 | Bernardino K, Ribeiro M C C. Hydrogen-bonding and symmetry breaking in the protic ionic liquid 1-ethylimidazolium nitrate[J]. Vibrational Spectroscopy, 2022, 120: 103358. |
21 | Li P F, Shang D W, Tu W H, et al. NH3 absorption performance and reversible absorption mechanisms of protic ionic liquids with six-membered N-heterocyclic cations[J]. Separation and Purification Technology, 2020, 248: 117087. |
22 | Huang H Y, Padin J, Yang R T. Comparison of π-complexations of ethylene and carbon monoxide with Cu+ and Ag+ [J]. Industrial & Engineering Chemistry Research, 1999, 38(7): 2720-2725. |
23 | Repper S E, Haynes A, Ditzel E J, et al. Infrared spectroscopic study of absorption and separation of CO using copper ( Ⅰ ) -containing ionic liquids[J]. Dalton Transactions, 2017, 46(9): 2821-2828. |
24 | Tao D J, An X C, Gao Z T, et al. Cuprous-based composite ionic liquids for the selective absorption of CO: experimental study and thermodynamic analysis[J]. AIChE Journal, 2022, 68(5): e17631. |
25 | 刘玉梅. 离子液体强化吸收一氧化碳和醇解反应过程研究[D]. 南昌: 江西师范大学,2019. |
Liu Y M. Study on ionic liquids for intensified CO absorption and alcoholysis reaction processes[D]. Nanchang: Jiangxi Normal University, 2019. | |
26 | Cui G K, Jiang K, Liu H Y, et al. Highly efficient CO removal by active cuprous-based ternary deep eutectic solvents[HDEEA][Cl]+ CuCl + EG[J]. Separation and Purification Technology, 2021, 274: 118985. |
27 | 张志刚, 张德彪, 张亲亲, 等. 基于COSMO-RS方法筛选离子液体分离乙酸乙酯-乙腈共沸物[J]. 化工学报, 2019, 70(1): 146-153. |
Zhang Z G, Zhang D B, Zhang Q Q, et al. Screening of ionic liquids for separation of ethyl acetate-acetonitrile azeotrope based on COSMO-RS[J]. CIESC Journal, 2019, 70(1): 146-153. | |
28 | Klamt A, Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J]. J. Chem. Soc., Perkin Trans. 2, 1993(5): 799-805. |
29 | Klamt A. The COSMO and COSMO-RS solvation models[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1(5): 699-709. |
30 | Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. |
31 | 杨倩. 离子液体-CO(H2)体系的UNIFAC模型和实验研究[D]. 北京: 北京化工大学, 2014. |
Yang Q. UNIFAC model for ionic liquid-CO (H2) systems: an experimental and modeling study[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
32 | Liu H, Liu B, Lin L C, et al. A hybrid absorption–adsorption method to efficiently capture carbon[J]. Nature Communications, 2014, 5: 5147. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[5] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[6] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[7] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[8] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[9] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[10] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[11] | Xue FU, Tingting CHEN, Tingting CHEN, Yingjie XU. Research progress on the conductivity properties of ionic liquids [J]. CIESC Journal, 2022, 73(5): 1883-1893. |
[12] | Wenxuan BAI, Jinxiang CHEN, Fen LIU, Jingcong ZHANG, Zhiping GU, Chengming XIONG, Wangjun SHI, Jiang YU. Metal-based ionic liquid wet oxidative desulfurization process: development and prospect [J]. CIESC Journal, 2022, 73(5): 1847-1862. |
[13] | Yanlong JIANG, Ni ZHANG, Danran LI, Bingbing ZHU, Yichen JIANG, Haijun CHEN, Yuezhao ZHU. Selected ionic liquids by COSMO-RS method for tar removal [J]. CIESC Journal, 2022, 73(4): 1704-1713. |
[14] | Mingyan LI, Jinlong LI, Changjun PENG, Honglai LIU. The effect of ionic liquids on the vapor-liquid equilibrium of ammonia-water solution by the COSMO-SAC [J]. CIESC Journal, 2022, 73(3): 1044-1053. |
[15] | Tengfei GAO, Guoxuan LI, Zhigang LEI. Solvents selection for separation of biphenyl from FCC diesel: experimental and computational thermodynamics [J]. CIESC Journal, 2022, 73(12): 5314-5323. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 330
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 610
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||