CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 4163-4172.DOI: 10.11949/0438-1157.20220552
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Ruohan DU1(), Bo PANG1, Ning WANG1, Fujun CUI2(), Minggang GUO2, Gaohong HE1,2, Xuemei WU1()
Received:
2022-04-19
Revised:
2022-06-07
Online:
2022-10-09
Published:
2022-09-05
Contact:
Fujun CUI, Xuemei WU
杜若晗1(), 逄博1, 王宁1, 崔福军2(), 郭明钢2, 贺高红1,2, 吴雪梅1()
通讯作者:
崔福军,吴雪梅
作者简介:
杜若晗(1997—),女,硕士研究生,drh_dut@163.com
基金资助:
CLC Number:
Ruohan DU, Bo PANG, Ning WANG, Fujun CUI, Minggang GUO, Gaohong HE, Xuemei WU. Continuous covalent organic framework composite membrane with size-sieving effect for vanadium flow battery[J]. CIESC Journal, 2022, 73(9): 4163-4172.
杜若晗, 逄博, 王宁, 崔福军, 郭明钢, 贺高红, 吴雪梅. 连续共价有机框架筛分复合膜及全钒电池性能[J]. 化工学报, 2022, 73(9): 4163-4172.
Add to citation manager EndNote|Ris|BibTeX
膜 | 悬浮液用量/ml | 分离层厚度/μm |
---|---|---|
COF-VF 0.9 | 50 | 0.9 |
COF-VF 2.1 | 100 | 2.1 |
COF-VF 6.0 | 200 | 6.0 |
Table 1 Dosage of suspension and separating layer thickness of COF-VF membranes
膜 | 悬浮液用量/ml | 分离层厚度/μm |
---|---|---|
COF-VF 0.9 | 50 | 0.9 |
COF-VF 2.1 | 100 | 2.1 |
COF-VF 6.0 | 200 | 6.0 |
1 | Park M, Ryu J, Cho J. Nanostructured electrocatalysts for all-vanadium redox flow batteries[J]. Chemistry, an Asian Journal, 2015, 10(10): 2096-2110. |
2 | Wang K, Liu L, Xi J Y, et al. Reduction of capacity decay in vanadium flow batteries by an electrolyte-reflow method[J]. Journal of Power Sources, 2017, 338: 17-25. |
3 | Zeng Y K, Zhou X L, An L, et al. A high-performance flow-field structured iron-chromium redox flow battery[J]. Journal of Power Sources, 2016, 324: 738-744. |
4 | Wu M C, Zhao T S, Zhang R H, et al. Carbonized tubular polypyrrole with a high activity for the Br2/Br- redox reaction in zinc-bromine flow batteries[J]. Electrochimica Acta, 2018, 284: 569-576. |
5 | Tan R, Wang A Q, Malpass-Evans R, et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage[J]. Nature Materials, 2020, 19(2): 195-202. |
6 | Gu S, Gong K, Yan E Z, et al. A multiple ion-exchange membrane design for redox flow batteries[J]. Energy Environ. Sci., 2014, 7(9): 2986-2998. |
7 | Mauritz K A, Moore R B. State of understanding of nafion[J]. Chemical Reviews, 2004, 104(10): 4535-4585. |
8 | Yuan Z Z, Li X F, Hu J B, et al. Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium[J]. Phys. Chem. Chem. Phys., 2014, 16(37): 19841-19847. |
9 | Yuan Z Z, Li X F, Zhao Y Y, et al. Mechanism of polysulfone-based anion exchange membranes degradation in vanadium flow battery[J]. ACS Applied Materials & Interfaces, 2015, 7(34): 19446-19454. |
10 | Zhang N, Yang B Y, Huo J, et al. Hydration structures of vanadium/oxovanadium cations in the presence of sulfuric acid: a molecular dynamics simulation study[J]. Chemical Engineering Science, 2019, 195: 683-692. |
11 | Mai Z S, Zhang H M, Li X F, et al. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application[J]. Journal of Power Sources, 2011, 196: 482-487. |
12 | 柳东东, 林茂才, 管涛, 等. 全钒氧化还原液流电池Nafion/SiO2复合膜的研究[J]. 电化学, 2010, 16(4): 455-459. |
Liu D D, Lin M C, Guan T, et al. Research on Nafion/SiO2 composite membrane in all vanadium redox flow battery[J]. Electrochemistry, 2010, 16(4): 455-459. | |
13 | Teng X G, Zhao Y T, Xi J Y, et al. Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery[J]. Journal of Power Sources, 2009, 189: 1240-1246. |
14 | Ye J Y, Zhao X L, Ma Y L, et al. Hybrid membranes dispersed with superhydrophilic TiO2 nanotubes toward ultra-stable and high-performance vanadium redox flow batteries[J]. Advanced Energy Materials, 2020, 10: 1904041. |
15 | Hossain S I, Aziz M A, Shanmugam S. Ultrahigh ion-selective and durable nafion-NdZr composite layer membranes for all-vanadium redox flow batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1998-2007. |
16 | Lu W J, Yuan Z Z, Ming R L, et al. Solvent-induced rearrangement of ion-transport channels: a way to create advanced porous membranes for vanadium flow batteries[J]. Advanced Functional Materials, 2017, 27: 1604587. |
17 | Lu W J, Yuan Z Z, Zhao Y Y, et al. Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application[J]. Energy Storage Materials, 2018, 10: 40-47. |
18 | Yang R D, Cao Z S, Yang S W, et al. Colloidal silicalite-nafion composite ion exchange membrane for vanadium redox-flow battery[J]. Journal of Membrane Science, 2015, 484: 1-9. |
19 | Liu S, Sang X X, Wang L H, et al. Incorporation of metal-organic framework in polymer membrane enhances vanadium flow battery performance[J]. Electrochimica Acta, 2017, 257: 243-249. |
20 | Pang B, Cui F J, Chen W T, et al. Construction of hierarchical proton sieving-conductive channels in sulfated UIO-66 grafted polybenzimidazole ion conductive membrane for vanadium redox flow battery[J]. Journal of Power Sources, 2022, 526: 231132. |
21 | Su L, Zhang D S, Peng S S, et al. Orientated graphene oxide/Nafion ultra-thin layer coated composite membranes for vanadium redox flow battery[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21806-21816. |
22 | Kim S, Choi J, Choi C, et al. Pore-size-tuned graphene oxide frameworks as ion-selective and protective layers on hydrocarbon membranes for vanadium redox-flow batteries[J]. Nano Letters, 2018, 18(6): 3962-3968. |
23 | Geng K Y, He T, Liu R Y, et al. Covalent organic frameworks: design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933. |
24 | Côté A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
25 | Huang N, Chen X, Krishna R, et al. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization[J]. Angewandte Chemie (International Ed. in English), 2015, 54(10): 2986-2990. |
26 | 刘秀英, 孟令广, 于景新, 等. 共价有机骨架材料的CO2捕获性能研究[J]. 化工新型材料, 2019, 47(1): 235-238, 242. |
Liu X Y, Meng L G, Yu J X, et al. Study on carbon dioxide capture of covalent organic frameworks[J]. New Chemical Materials, 2019, 47(1): 235-238, 242. | |
27 | Lin S, Diercks C S, Zhang Y B, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO₂ reduction in water[J]. Science, 2015, 349(6253): 1208-1213. |
28 | Gan Z J, Lu S L, Qiu L, et al. Fine tuning of supported covalent organic framework with molecular active sites loaded as efficient electrocatalyst for water oxidation[J]. Chemical Engineering Journal, 2021, 415: 127850. |
29 | Pan F S, Guo W X, Su Y L, et al. Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation[J]. Separation and Purification Technology, 2019, 215: 582-589. |
30 | Fu J R, Das S, Xing G L, et al. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2 [J]. Journal of the American Chemical Society, 2016, 138(24): 7673-7680. |
31 | Xu F, Xu H, Chen X, et al. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage[J]. Angewandte Chemie (International Ed. in English), 2015, 54(23): 6814-6818. |
32 | Yin Z Y, Geng H B, Yang P F, et al. Improved proton conduction of sulfonated poly (ether ether ketone) membrane by sulfonated covalent organic framework nanosheets[J]. International Journal of Hydrogen Energy, 2021, 46(52): 26550-26559. |
33 | Cao Y, Wu H, Li G, et al. Ion selective covalent organic framework enabling enhanced electrochemical performance of lithium-sulfur batteries[J]. Nano Letters, 2021, 21(7): 2997-3006. |
34 | Di M T, Hu L, Gao L, et al. Covalent organic framework (COF) constructed proton permselective membranes for acid supporting redox flow batteries[J]. Chemical Engineering Journal, 2020, 399: 125833. |
35 | Wang R, Wei M J, Wang Y. Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination[J]. Journal of Membrane Science, 2020, 604: 118090. |
36 | Liu J T, Han G, Zhao D L, et al. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation[J]. Science Advances, 2020, 6(41): eabb1110. |
37 | Li Y, Wu Q X, Guo X H, et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving[J]. Nature Communications, 2020, 11: 599. |
38 | Yang X Q, Zhu H J, Jiang F J, et al. Notably enhanced proton conductivity by thermally-induced phase-separation transition of Nafion/poly(vinylidene fluoride) blend membranes[J]. Journal of Power Sources, 2020, 473: 228586. |
39 | Peng S S, Wu X M, Yan X M, et al. Polybenzimidazole membranes with nanophase-separated structure induced by non-ionic hydrophilic side chains for vanadium flow batteries[J]. Journal of Materials Chemistry A, 2018, 6(9): 3895-3905. |
40 | Mohammadi T, Kazacos M S. Evaluation of the chemical stability of some membranes in vanadium solution[J]. Journal of Applied Electrochemistry, 1997, 27(2): 153-160. |
41 | Pan F S, Guo W X, Su Y L, et al. Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation[J]. Separation and Purification Technology, 2019, 215: 582-589. |
42 | Kim S, Yuk S, Kim H G, et al. A hydrocarbon/Nafion bilayer membrane with a mechanical nano-fastener for vanadium redox flow batteries [J]. Journal of Materials Chemistry A, 2017, 5(33): 17279-17286. |
43 | He X Y, Yang Y, Wu H, et al. De novo design of covalent organic framework membranes toward ultrafast anion transport[J]. Advanced Materials (Deerfield Beach, Fla.), 2020, 32(36): 2001284. |
44 | Tao S S, Zhai L P, Dinga Wonanke A D, et al. Confining H3PO4 network in covalent organic frameworks enables proton super flow[J]. Nature Communications, 2020, 11: 1981. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[6] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[7] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[10] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[13] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[14] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[15] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||