CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1409-1418.DOI: 10.11949/0438-1157.20200756
• Separation engineering • Previous Articles Next Articles
NI Jia1(),SUN Xueyan1,SHUI Ziyi1,HE Feihong2,HUI Xiaomin3,ZHU Liangliang1(),CHEN Xi4()
Received:
2020-06-16
Revised:
2020-10-23
Online:
2021-03-05
Published:
2021-03-05
Contact:
ZHU Liangliang,CHEN Xi
倪佳1(),孙雪艳1,税子怡1,贺飞鸿2,惠小敏3,朱亮亮1(),陈曦4()
通讯作者:
朱亮亮,陈曦
作者简介:
倪佳(1996—),女,硕士研究生,基金资助:
CLC Number:
NI Jia, SUN Xueyan, SHUI Ziyi, HE Feihong, HUI Xiaomin, ZHU Liangliang, CHEN Xi. Energy consumption and performance optimization of moisture swing sorbents for direct air capture of CO2[J]. CIESC Journal, 2021, 72(3): 1409-1418.
倪佳, 孙雪艳, 税子怡, 贺飞鸿, 惠小敏, 朱亮亮, 陈曦. 湿法再生CO2空气捕集材料的能耗与性能优化[J]. 化工学报, 2021, 72(3): 1409-1418.
Add to citation manager EndNote|Ris|BibTeX
厚度/mm | 含水率/% | 离子交换容量/ (mol/kg) | 尺寸变化率/% | 爆破强度/ MPa | |
---|---|---|---|---|---|
厚度变化率 | 线性溶胀度 | ||||
0.42±0.04 | 35~45 | ≥1.8 | ≤80 | ≤13 | >0.3 |
Table 1 Manufacturer data on the commercial heterogeneous polyethylene anion exchange membrane
厚度/mm | 含水率/% | 离子交换容量/ (mol/kg) | 尺寸变化率/% | 爆破强度/ MPa | |
---|---|---|---|---|---|
厚度变化率 | 线性溶胀度 | ||||
0.42±0.04 | 35~45 | ≥1.8 | ≤80 | ≤13 | >0.3 |
预处理方法 | Qe/(mmol/g) | k1/min-1 | k2/min-1 | R2 | 吸附平衡 时间/min |
---|---|---|---|---|---|
水热处理48 h | 0.77 | 0.035 | 0.159 | 0.9992 | 160 |
常温水浸泡5 d | 0.78 | 0.026 | 0.037 | 0.9991 | 180 |
Table 2 Fitting adsorption parameters of the MPFO model for QAR500 sheets
预处理方法 | Qe/(mmol/g) | k1/min-1 | k2/min-1 | R2 | 吸附平衡 时间/min |
---|---|---|---|---|---|
水热处理48 h | 0.77 | 0.035 | 0.159 | 0.9992 | 160 |
常温水浸泡5 d | 0.78 | 0.026 | 0.037 | 0.9991 | 180 |
脱附方法 | 预处理方法 | Qe/(mmol/g) | 解吸比Rdes/% | k1/min-1 | k2/min-1 | R2 | 脱附平衡时间/min |
---|---|---|---|---|---|---|---|
超声加湿 | 水热处理 (48 h) | 0.530 | 68.83 | 0.223 | 0.092 | 0.9960 | 40 |
常温水浸泡 (5 d) | 0.510 | 65.38 | 0.205 | 0.099 | 0.9980 | 40 | |
浸润加湿 | 水热处理 (48 h) | 0.240 | 31.17 | 0.869 | 0.078 | 0.9920 | 40 |
常温水浸泡 (5 d) | 0.210 | 26.92 | 0.826 | 0.077 | 0.9960 | 40 | |
自然蒸发加湿 | 水热处理 (48 h) | 0.170 | 22.08 | 0.156 | 0.076 | 0.9912 | 40 |
常温水浸泡 (5 d) | 0.160 | 20.51 | 0.142 | 0.073 | 0.9933 | 40 |
Table 3 Fitting desorption parameters of the MPFO model for QAR500 sheets with different humidification methods
脱附方法 | 预处理方法 | Qe/(mmol/g) | 解吸比Rdes/% | k1/min-1 | k2/min-1 | R2 | 脱附平衡时间/min |
---|---|---|---|---|---|---|---|
超声加湿 | 水热处理 (48 h) | 0.530 | 68.83 | 0.223 | 0.092 | 0.9960 | 40 |
常温水浸泡 (5 d) | 0.510 | 65.38 | 0.205 | 0.099 | 0.9980 | 40 | |
浸润加湿 | 水热处理 (48 h) | 0.240 | 31.17 | 0.869 | 0.078 | 0.9920 | 40 |
常温水浸泡 (5 d) | 0.210 | 26.92 | 0.826 | 0.077 | 0.9960 | 40 | |
自然蒸发加湿 | 水热处理 (48 h) | 0.170 | 22.08 | 0.156 | 0.076 | 0.9912 | 40 |
常温水浸泡 (5 d) | 0.160 | 20.51 | 0.142 | 0.073 | 0.9933 | 40 |
1 | Kumar A, Madden D G, Lusi M, et al. Direct air capture of CO2 by physisorbent materials[J]. Angewandte Chemie (International Ed. in English), 2015, 54(48): 14372-14377. |
2 | Van Vuuren D P, Meinshausen M, Plattner G K, et al. Temperature increase of 21st century mitigation scenarios[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(40): 15258-15262. |
3 | Smith J B, Schneider S H, Oppenheimer M, et al. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(11): 4133-4137. |
4 | van Vuuren D, Nakicenovic N, Riahi K, et al. An energy vision: the transformation towards sustainability—interconnected challenges and solutions[J]. Current Opinion in Environmental Sustainability, 2012, 4(1): 18-34. |
5 | Masson-Delmotte V, Zhai P, Pörtner H O, et al. An IPCC special report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, development sustainable, and efforts to eradicate poverty[R]. Switzerland: World Meteorological Organization, 2018. |
6 | Folger P. Carbon capture and sequestration (CCS) in the United States[R]. Washington: Congressional Research Service, 2017. |
7 | Yang Z Q, He C Q, Sui H, et al. Recent advances of CO2-responsive materials in separations[J]. Journal of CO2 Utilization, 2019, 30: 79-99. |
8 | 科学技术部社会发展科技司, 中国21世纪议程管理中心. 中国碳捕集利用与封存技术发展路线图: 2019[M]. 北京: 科学出版社, 2019. |
Department of Science and Technology for Social Development, Ministry of Science and Technology of the People's Republic of China, the Administrative Center of China's Agenda21. China's Roadmap of Carbon Capture Utilization and Storage Technology Development (2019)[M]. Beijing: Science Press, 2019. | |
9 | 陈东良, 张忠林, 杨景轩, 等. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945. |
Chen D L, Zhang Z L, Yang J X, et al. Process simulation and energy saving analysis of CO2 capture by chemical absorption method based on self-heat recuperation[J]. CIESC Journal, 2019, 70(8): 2938-2945. | |
10 | 郑碏, 董立户, 陈健, 等. CO2捕集的吸收溶解度计算和过程模拟[J]. 化工学报, 2010, 61(7): 1740-1746. |
Zheng Q, Dong L H, Chen J, et al. Absorption solubility calculation and process simulation for CO2 capture[J]. CIESC Journal, 2010, 61(7): 1740-1746. | |
11 | Olivier J G J, Janssens-Maenhout G, Muntean M, et al. Trends in global CO2 emissions: 2013 report[EB/OL]. [2014-12-16]. |
12 | Shi X Y, Xiao H, Azarabadi H, et al. Sorbents for the direct capture of CO2 from ambient air[J]. Angewandte Chemie International Edition, 2020, 59(18): 6984-7006. |
13 | Wang T, Lackner K S, Wright A. Moisture swing sorbent for carbon dioxide capture from ambient air[J]. Environmental Science & Technology, 2011, 45(15): 6670-6675. |
14 | Lackner K, Ziock H J, Grimes P. Carbon dioxide extraction from air: is it an option?[R]. United States: Los Alamos National Laboratory, 1999. |
15 | Fasihi M, Efimova O, Breyer C. Techno-economic assessment of CO2 direct air capture plants[J]. Journal of Cleaner Production, 2019, 224: 957-980. |
16 | Leeson D, Mac Dowell N, Shah N, et al. A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources[J]. International Journal of Greenhouse Gas Control, 2017, 61: 71-84. |
17 | Bos M, Kroeze V, Sutanto S, et al. Evaluating regeneration options of solid amine sorbent for CO2 removal[J]. Industrial & Engineering Chemistry Research, 2018, 57(32): 11141-11153. |
18 | Bollini P, Didas S A, Jones C W. Amine-oxide hybrid materials for acid gas separations[J]. Journal of Materials Chemistry, 2011, 21(39): 15100-15120. |
19 | Stuckert N R, Yang R T. CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15[J]. Environmental Science & Technology, 2011, 45(23): 10257-10264. |
20 | Shi X Y, Xiao H, Lackner K S, et al. Capture CO2 from ambient air using nanoconfined ion hydration[J]. Angewandte Chemie International Edition, 2016, 55(12): 4026-4029. |
21 | Shi X Y, Xiao H, Kanamori K, et al. Moisture-driven CO2 sorbents[J]. Joule, 2020, 4(8): 1823-1837. |
22 | Parvazinia M, Garcia S, Maroto-Valer M. CO2 capture by ion exchange resins as amine functionalised adsorbents[J]. Chemical Engineering Journal, 2018, 331: 335-342. |
23 | Wang X R, Song J Z, Chen Y, et al. CO2 absorption over ion exchange resins: the effect of amine functional groups and microporous structures[J]. Industrial & Engineering Chemistry Research, 2020, 59(38): 16507-16515. |
24 | van der Giesen C, Meinrenken C J, Kleijn R, et al. A life cycle assessment case study of coal-fired electricity generation with humidity swing direct air capture of CO2 versus MEA-based postcombustion capture[J]. Environmental Science & Technology, 2017, 51(2): 1024-1034. |
25 | Yang X Y, Al-Duri B. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon[J]. Journal of Colloid and Interface Science, 2005, 287(1): 25-34. |
26 | Li J L, Henni A, Tontiwachwuthikul P. Reaction kinetics of CO2 in aqueous ethylenediamine, ethyl ethanolamine, and diethyl monoethanolamine solutions in the temperature range of 298-313 K, using the stopped-flow technique[J]. Industrial & Engineering Chemistry Research, 2007, 46(13): 4426-4434. |
27 | Sarı A, Şahinoğlu G, Tüzen M. Antimony(Ⅲ) adsorption from aqueous solution using raw perlite and Mn-modified perlite: equilibrium, thermodynamic, and kinetic studies[J]. Industrial & Engineering Chemistry Research, 2012, 51(19): 6877-6886. |
28 | Song J Z, Zhu L L, Shi X Y, et al. Moisture swing ion-exchange resin-PO4 sorbent for reversible CO2 capture from ambient air[J]. Energy & Fuels, 2019, 33(7): 6562-6567. |
29 | Song J Z, Liu J, Zhao W, et al. Quaternized chitosan/PVA aerogels for reversible CO2 capture from ambient air[J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 4941-4948. |
30 | Chen X, Xu B X, Liu L. Nanoscale fluid mechanics and energy conversion[J]. Applied Mechanics Reviews, 2014, 66(5): 050803. |
31 | 丁华, 汤桂华. 转化系统气体换热器总传热系数及压降的统计关联式[J]. 硫酸工业, 1997, (4): 15-18, 60. |
Ding H, Tang G H. Design consideration of 80 kt/a sulphur-burning sulphuric acid plants[J]. Sulphuric Acid Industry, 1997, (4): 15-18, 60. | |
32 | 刘永贞. 管壳式换热器传热系数影响因素分析[J]. 科技经济导刊, 2016, (13): 48,50. |
Liu Y Z. Analysis of influencing factors on heat transfer coefficient of shell and tube heat exchanger [J]. Technology and Economic Guide, 2016, (13): 48,50. | |
33 | 黄晨. 大型循环流化床锅炉炉内受热面对流传热特性研究[D]. 杭州: 浙江大学, 2012. |
Huang C. Investigation of convective heat transfer in a large circulating fluidized bed[D]. Hangzhou: Zhejiang University, 2012. | |
34 | 舟丹. 节约1度(kW·h)电或1 kg煤到底减排了多少“二氧化碳”或“碳”?[J]. 中外能源, 2011, 16(11): 58. |
Zhou D. How much “carbon dioxide” or “carbon” can be reduced by saving 1 kW•h electricity or 1 kg coal? [J]. Sino-Global Energy, 2011, 16(11): 58. | |
35 | 涂华, 刘翠杰. 标准煤二氧化碳排放的计算[J]. 煤质技术, 2014(2): 57-60. |
Tu H, Liu C J. Calculation of CO2 emission of standard coal[J]. Coal Quality Technology, 2014(2): 57-60. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[7] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[8] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[10] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[11] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[14] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[15] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||