CIESC Journal ›› 2023, Vol. 74 ›› Issue (10): 4109-4128.DOI: 10.11949/0438-1157.20230888

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Simulation of the application of nano-scale phase change microcapsules for thermal storage in structured packed bed

Zhiguo HUANG(), Zhigao SUN()   

  1. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
  • Received:2023-08-28 Revised:2023-10-04 Online:2023-12-22 Published:2023-10-25
  • Contact: Zhigao SUN

纳米相变微胶囊在蓄热结构化填充床中的应用模拟

黄志国(), 孙志高()   

  1. 苏州科技大学环境科学与工程学院,江苏 苏州 215009
  • 通讯作者: 孙志高
  • 作者简介:黄志国(1994—),男,硕士研究生,1178736316@qq.com
  • 基金资助:
    江苏省高校自然科学研究重大项目(16KJA480001);江苏省自然科学基金项目(BK20170382);苏州市科技计划项目(SS202149)

Abstract:

Latent heat thermal energy storage using phase change materials is an effective approach to address the intermittency issues of renewable energy sources. Nano-scale phase change microcapsules were prepared by interfacial hydrolysis condensation method using tetrabutyl titanate (TBT) as the precursor. The average thermal conductivity is enhanced to 215%, reaching approximately 0.43 W/(m·K). The phase change temperature is found to be 42.4℃. The latent heat of nano-encapsulated phase change materials is about 234.7 J/g. The nano-scale phase change microcapsules improved heat transfer performance and are suitable for heat storage of solar thermal water heating systems. A three-dimensional computational model was established, and numerical simulations were conducted on the packed bed using Fluent software to study the heat storage/release performance of the sequential structure (SS) and cross compound structure (CS) packed bed. The analysis focused on examining the variations in liquid fraction, temperature distribution, and thermal storage/release power for both SS and CS under different flow rate. The results show that the melting/solidification rates increase with increasing flow rate. At the same flow rate, CS exhibited faster melting/solidification compared to SS. The temperature variation of CS was more uniform than that of SS at different stages. At lower flow rate (2 L/min), both SS and CS exhibit longer and more stable periods of thermal storage/release. Under different flow rate (2, 4, and 6 L/min), the peak thermal storage power of CS is 1.7—1.9 times that of SS, and peak thermal release power is 1.8—2.0 times that of SS.

Key words: phase change, nano-scale phase change microcapsule, packed bed, numerical simulation, sequential structure, cross compound structure, thermal storage/release performance

摘要:

利用相变材料的潜热储能,是解决可再生能源不连续问题的有效途径之一。以钛酸四丁酯(TBT)为前体,采用界面水解-缩聚法制备了纳米相变微胶囊。纳米相变微胶囊的热导率提高到原材料的215%,约为0.43 W/(m·K),相变温度为42.4℃,相变潜热达到234.7 J/g,纳米相变微胶囊强化了相变材料的传热性能蓄热,适用于太阳能热水系统。建立了三维计算模型,利用Fluent软件对填充床进行了数值模拟,研究了顺排结构(SS)和叉排结构(CS)填充床的蓄/放热性能。分析了两种结构化填充床在不同流速下,液相率、温度场和蓄/放热功率的变化情况。结果表明,随着流速的增大,SS和CS的熔化/凝固速率均加快。在相同流速下,CS比SS熔化/凝固更快。SS和CS在不同的阶段升温速率不同,与SS相比,CS的温度变化更加均匀。在较低流速(2 L/min)下,SS和CS蓄/放热持续时间较长,变化较小。在不同的流速(2、4和6 L/min)下,CS的峰值蓄热功率是SS的1.7倍~1.9倍,峰值放热功率是SS的1.8倍~2.0倍。

关键词: 相变, 纳米相变微胶囊, 填充床, 数值模拟, 顺排结构, 叉排结构, 蓄/放热性能

CLC Number: