CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 65-71.DOI: 10.11949/j.issn.0438-1157.20180755
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Hong LIU(),Yang HE,Chang CAI,Jiuliang GAO,Hongchao YIN
Received:
2018-07-06
Revised:
2018-10-08
Online:
2019-01-05
Published:
2019-01-05
Contact:
Hong LIU
通讯作者:
刘红
作者简介:
刘红(1970—),女,博士,副教授,<email>hongliu@dlut.edu.cn</email>
基金资助:
CLC Number:
Hong LIU, Yang HE, Chang CAI, Jiuliang GAO, Hongchao YIN. Influence of ethanol and n-butanol additives on spray cooling[J]. CIESC Journal, 2019, 70(1): 65-71.
刘红, 何阳, 蔡畅, 高久良, 尹洪超. 乙醇和正丁醇添加剂对喷雾冷却的影响[J]. 化工学报, 2019, 70(1): 65-71.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180755
Spray characteristics | Numeric value |
---|---|
ambient temperature | 30℃ |
coolant temperature | 25℃ |
ambient pressure | 0.1 MPa |
nozzle pressure | 0.3 MPa |
spray cone angle | 60° |
spray height | 32 mm |
nozzle diameter | 0.61 mm |
volume flow rate | 15.78 L/h |
Table 1 Experimental conditions of spray cooling
Spray characteristics | Numeric value |
---|---|
ambient temperature | 30℃ |
coolant temperature | 25℃ |
ambient pressure | 0.1 MPa |
nozzle pressure | 0.3 MPa |
spray cone angle | 60° |
spray height | 32 mm |
nozzle diameter | 0.61 mm |
volume flow rate | 15.78 L/h |
Components | Manufacturer | Type | Range |
---|---|---|---|
nozzle | Spraying Systems Co. | TG-0.5 | |
data acquisition instrument | Agilent | 34972A | |
DC power supply | Keysight Technology | N5769A | 0—1500 W |
flow meter | Asmik | LFT-MIK-2 | 2.1—90 L/h |
thermocouple | Omega | GG-K-30 | -200—800℃ |
pressure senor | Asmik | MIK-P300 | 0—0.6 MPa |
pump | Taiwan Sanmiao Pump Co. Ltd. | SMI 5-6T | 0—0.5 MPa |
Table 2 Detailed information of experimental devices
Components | Manufacturer | Type | Range |
---|---|---|---|
nozzle | Spraying Systems Co. | TG-0.5 | |
data acquisition instrument | Agilent | 34972A | |
DC power supply | Keysight Technology | N5769A | 0—1500 W |
flow meter | Asmik | LFT-MIK-2 | 2.1—90 L/h |
thermocouple | Omega | GG-K-30 | -200—800℃ |
pressure senor | Asmik | MIK-P300 | 0—0.6 MPa |
pump | Taiwan Sanmiao Pump Co. Ltd. | SMI 5-6T | 0—0.5 MPa |
Tw/℃ | qw/(W/cm2) | qe-w①/(W/cm2) | ε/% | hw/(W/(cm2·°C)) | he-w/(W/(cm2·°C)) | τ/% |
---|---|---|---|---|---|---|
77 | 78.4 | 107.3 | 36.9 | 1.38 | 2.05 | 48.5 |
98 | 110 | 166 | 50 | 1.52 | 2.26 | 48.7 |
120 | 278 | 371 | 33.5 | 3.04 | 4.02 | 32.2 |
Table 3 Comparison of wall heat flux and heat transfer coefficient between 4% ethanol-water and water at different temperature
Tw/℃ | qw/(W/cm2) | qe-w①/(W/cm2) | ε/% | hw/(W/(cm2·°C)) | he-w/(W/(cm2·°C)) | τ/% |
---|---|---|---|---|---|---|
77 | 78.4 | 107.3 | 36.9 | 1.38 | 2.05 | 48.5 |
98 | 110 | 166 | 50 | 1.52 | 2.26 | 48.7 |
120 | 278 | 371 | 33.5 | 3.04 | 4.02 | 32.2 |
Tw/℃ | qw/(W/cm2) | qn-w/(W/cm2) | ε/% | hw/(W/(cm2·°C)) | hn-w/(W/(cm2·°C)) | τ/% |
---|---|---|---|---|---|---|
83 | 82.0 | 105.0 | 23.0 | 1.41 | 1.83 | 29.7 |
103 | 124.3 | 162.9 | 31.1 | 1.62 | 2.1 | 29.6 |
120 | 278 | 367.9 | 32.3 | 3.04 | 3.94 | 29.6 |
Table 4 Comparison of wall heat flux and heat transfer coefficient between 0.5% n-butanol- water and water at different temperature
Tw/℃ | qw/(W/cm2) | qn-w/(W/cm2) | ε/% | hw/(W/(cm2·°C)) | hn-w/(W/(cm2·°C)) | τ/% |
---|---|---|---|---|---|---|
83 | 82.0 | 105.0 | 23.0 | 1.41 | 1.83 | 29.7 |
103 | 124.3 | 162.9 | 31.1 | 1.62 | 2.1 | 29.6 |
120 | 278 | 367.9 | 32.3 | 3.04 | 3.94 | 29.6 |
Property | Water | Ethanol | n-Butanol |
---|---|---|---|
cp/(J/(kg·℃)) | 4184.45 | 2438.57 | 2400.36 |
hfg/(kJ/kg) | 2435.12 | 922.79 | 710.35 |
Psat/Pa | 3170.38 | 7927.72 | 820.42 |
μ/(mPa·s) | 0.91 | 1.08 | 2.53 |
k/(W/(m·℃)) | 0.56 | 0.17 | 0.15 |
σ/(mN/m) | 72.82 | 22.10 | 24.40 |
Table 5 Physical properties of water and alcohol at 25℃
Property | Water | Ethanol | n-Butanol |
---|---|---|---|
cp/(J/(kg·℃)) | 4184.45 | 2438.57 | 2400.36 |
hfg/(kJ/kg) | 2435.12 | 922.79 | 710.35 |
Psat/Pa | 3170.38 | 7927.72 | 820.42 |
μ/(mPa·s) | 0.91 | 1.08 | 2.53 |
k/(W/(m·℃)) | 0.56 | 0.17 | 0.15 |
σ/(mN/m) | 72.82 | 22.10 | 24.40 |
1 | 崔万新. 微尺度热分析关键技术研究[D]. 西安: 西安电子科技大学, 2007. |
CuiW X. Research on the key technology of microscale thermal analysis[D]. Xi an: Xidian University, 2007. | |
2 | PaisM R, ChowL C, MahefkeyE T. Surface roughness and its effects on the heat transfer mechanism in spray cooling[J]. Journal of Heat Transfer, 1992, 114(1): 211-219. |
3 | SienskiK, EdenR, SchaeferD. 3-D electronic interconnect packaging[C]//Aerospace Applications Conference. IEEE, 1996: 363-373. |
4 | MudawarI. Assessment of high-heat-flux thermal management schemes[J]. Components and Packaging Technologies IEEE Transactions, 2001, 24(2): 122-141. |
5 | KandlikarS, BapatA. Evaluation of jet impingement, spray and microchannel chip cooling or high heat flux removal[J]. Heat Transfer Engineering, 2007, 28(11): 911-923. |
6 | ZhaoR, ChengW L, LiuQ N, et al. Study on heat transfer performance of spray cooling: model and analysis[J]. Heat and Mass Transfer, 2010, 46(8/9): 821-829. |
7 | ChengW L, ZhangW W, ChenH, et al. Spray cooling and flash evaporation cooling: the current development and application[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 614-628. |
8 | 宋玲利, 张仁元, 毛凌波. 纳米流体光热转换特性的研究[J]. 广东工业大学学报, 2011, 28(2): 56-58. |
SongL L, ZhangR Y, MaoL B. Study on the properties of photothermal conversion of nanofluids[J]. Journal of Guangdong University of Technology, 2011, 28(2): 56-58. | |
9 | KimS J, BangI C, BuongiornoJ, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 4105-4116. |
10 | UtomoA T, PothH, RobbinsP T, et al. Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7772-7781. |
11 | 王磊. 喷雾冷却及其影响因素的实验与数值研究[D]. 北京: 中国科学院工程热物理研究所, 2009. |
WangL. Experimental and numerical study on spray cooling and its influencing factors[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2009. | |
12 | MohapatraS S, AndhareS, ChakrabortyS, et al. Experimental study and optimization of air atomized spray with surfactant added water to produce high cooling rate[J]. Journal of Enhanced Heat Transfer, 2012, 19(5): 397-408. |
13 | HoracekB, KigerK T, KimJ. Single nozzle spray cooling heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2005, 48(8): 1425-1438. |
14 | CuiQ, ChandraS, MccahanS. The effect of dissolving gases or solids in water droplets boiling on a hot surface[J]. Journal of Heat Transfer, 2001, 123(4): 719-728. |
15 | ChengW L, XieB, HanF Y. An experimental investigation of heat transfer enhancement by addition of high-alcohol surfactant (HAS) and dissolving salt additive (DSA) in spray cooling[J]. Experimental Thermal and Fluid Science, 2013, 45: 198-202. |
16 | CuiQ. The effect of dissolving salts in water sprays used for quenching a hot surface(Ⅱ): Spray cooling [J]. International Journal of Heat and Mass Transfer, 2003, 125: 333-338. |
17 | 张雨薇, 刘妮. 含有添加剂的喷雾冷却研究进展[J]. 电子元件与材料, 2016, (1): 18-22. |
ZhangY W, LiuN. Research progress of spray cooling with additives[J]. Electronic Components and Materials, 2016, (1): 18-22. | |
18 | RavikumarS V, JhaJ M, SarkarI, et al. Enhancement of heat transfer rate in air-atomized spray cooling of a hot steel plate by using an aqueous solution of non-ionic surfactant and ethanol[J]. Applied Thermal Engineering, 2014, 64(1/2): 64-75. |
19 | BhattN H, RajR, VarshneyP, et al. Enhancement of heat transfer rate of high mass flux spray cooling by ethanol-water and ethanol-Tween20-water solution at very high initial surface temperature[J]. International Journal of Heat and Mass Transfer, 2017, 110: 330-347. |
20 | 章玮玮. 紧凑型喷雾冷却系统强化换热的研究[D]. 合肥: 中国科学技术大学, 2017. |
ZhangW W. Study on intensive heat transfer in a compact spray cooling system[D]. Hefei: University of Science and Technology of China, 2017. | |
21 | ChengW L, ZhangW W, JiangL J, et al. Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime[J]. Applied Thermal Engineering, 2015, 80: 160-167. |
22 | CourseyJ S. Enhancement of spray cooling heat transfer using extended surfaces and nanofluids[D]. Maryland: University of Maryland, 2007. |
23 | 金正一, 李凤岐. 一元线性参数最小二乘法中斜率及截距的不确定度[J]. 沈阳理工大学学报, 2000, 19(1): 73-76. |
JinZ Y, LiF Q. Unceartainty of the gradiene and the intercept in the least square method of the monadic linear parameter[J]. Journal of Shenyang Institute of Technology, 2000, 19(1): 73-76. | |
24 | MoffatR J. Contributions to the theory of single-sample uncertainty analysis[J]. Journal of Fluids Engineering, Transactions of the ASME, 1982, 104: 250-258. |
25 | ChenR H, ChowL C, NavedoJ E. Effects of spray characteristics on critical heat flux in subcooled water spray cooling[J]. International Journal of Heat and Mass Transfer, 2002, 45(19): 4033-4043. |
26 | SomasundaramS, TayA A O. Comparative study of intermittent spray cooling in single and two phase regimes[J]. International Journal of Thermal Sciences, 2013, 74: 174-182. |
27 | WuY W, HouY D, WangL, et al. Review on heat transfer and flow characteristics of liquid sodium (1): Single-phase[J]. Progress in Nuclear Energy, 2008, 104: 306-316. |
28 | LuG, WangX D, YanW M. Nucleate boiling inside small evaporating droplets: an experimental and numerical study[J]. International Journal of Heat and Mass Transfer, 2017, 108(B): 2253-2261. |
29 | BreitenbachJ, RoismanI V, TropeaC. Heat transfer in the film boiling regime: single drop impact and spray cooling[J]. International Journal of Heat and Mass Transfer, 2017, 110: 34-42. |
30 | ClayM A, MiksisM J. Effects of surfactant on droplet spreading[J]. Physics of Fluids, 2004, 16(8): 3070-3078. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[12] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[13] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||