CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 221-230.DOI: 10.11949/0438-1157.20230601
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Ruohan ZHAO1(), Mengmeng HUANG1, Chunying ZHU1(), Taotao FU1, Xiqun GAO2, Youguang MA1
Received:
2023-06-20
Revised:
2023-08-28
Online:
2024-03-11
Published:
2024-01-25
Contact:
Chunying ZHU
赵若晗1(), 黄蒙蒙1, 朱春英1(), 付涛涛1, 高习群2, 马友光1
通讯作者:
朱春英
作者简介:
赵若晗(1999—),女,硕士研究生,2021207330@tju.edu.cn
基金资助:
CLC Number:
Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels[J]. CIESC Journal, 2024, 75(1): 221-230.
赵若晗, 黄蒙蒙, 朱春英, 付涛涛, 高习群, 马友光. 缩口T型微通道内纳米流体吸收CO2的流动与传质研究[J]. 化工学报, 2024, 75(1): 221-230.
Add to citation manager EndNote|Ris|BibTeX
SiO2浓度/ %(质量) | 流体密度 ρ/(kg·m-3) | 流体黏度 μ/(mPa·s) | 表面张力 σ/(mN·m-1) |
---|---|---|---|
5 | 1028.3 | 1.102 | 35.14 |
10 | 1059.2 | 1.253 | 33.46 |
20 | 1126.5 | 1.689 | 30.91 |
Table 1 Physical properties of silica slurry
SiO2浓度/ %(质量) | 流体密度 ρ/(kg·m-3) | 流体黏度 μ/(mPa·s) | 表面张力 σ/(mN·m-1) |
---|---|---|---|
5 | 1028.3 | 1.102 | 35.14 |
10 | 1059.2 | 1.253 | 33.46 |
20 | 1126.5 | 1.689 | 30.91 |
Fig.5 Gas-liquid flow regime in the microchannel■bubbly flow; ●beaded bubble flow;▲compact slug flow; ▼slug-annular flow; —— conversion line between bubbly flow and beaded bubble flow; —·— conversion line between beaded bubble flow and compact slug flow; — — — conversion line between compact slug flow and slug-annular flow
Fig.9 Variation of liquid side volumetric mass transfer coefficient with operating conditions(hollow symbols represent bubbly flow, solid symbols represent beaded bubble flow, and semi-solid symbols represent compact slug flow)
1 | Tiwari S C, Bhardwaj A, Nigam K D P, et al. A strategy of development and selection of absorbent for efficient CO2 capture: an overview of properties and performance[J]. Process Safety and Environmental Protection, 2022, 163: 244-273. |
2 | Sheng L, Wang K, Deng J, et al. Gas-liquid microdispersion and microflow for carbon dioxide absorption and utilization: a review[J]. Current Opinion in Chemical Engineering, 2023, 40: 100917. |
3 | 张雪婷, 胡激江, 赵晶, 等. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
Zhang X T, Hu J J, Zhao J, et al. Preparation of high molecular weight polypropylene glycol in microchannel reactor[J]. CIESC Journal, 2023, 74(3): 1343-1351. | |
4 | 尧超群, 陈光文, 袁权. 微通道内气-液两相传质过程行为及其应用[J]. 化工学报, 2019, 70(10): 3635-3644. |
Yao C Q, Chen G W, Yuan Q. Mass transfer characteristics of gas-liquid two-phase flow in microchannels and applications[J]. CIESC Journal, 2019, 70(10): 3635-3644. | |
5 | Huang M M, Zhu C Y, Fu T T, et al. Enhancement of gas-liquid mass transfer by nanofluids in a microchannel under Taylor flow regime[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121435. |
6 | Yao C Q, Zhao Y C, Ma H Y, et al. Two-phase flow and mass transfer in microchannels: a review from local mechanism to global models[J]. Chemical Engineering Science, 2021, 229: 116017. |
7 | 郭戎威, 付涛涛, 朱春英, 等. 微通道内气-液两相流及并行放大的研究进展[J]. 化学工业与工程, 2021, 38(6): 74-86. |
Guo R W, Fu T T, Zhu C Y, et al. Research progress on gas-liquid two-phase flow and numbering-up strategy in microchannel[J]. Chemical Industry and Engineering, 2021, 38(6):74-86. | |
8 | Ganapathy H, Shooshtari A, Dessiatoun S, et al. Hydrodynamics and mass transfer performance of a microreactor for enhanced gas separation processes[J]. Chemical Engineering Journal, 2015, 266: 258-270. |
9 | 何万媛, 陈一宇, 朱春英, 等. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
He W Y, Chen Y Y, Zhu C Y, et al. Study on gas-liquid mass transfer characteristics in microchannel with array bulges[J]. CIESC Journal, 2023, 74(2): 690-697. | |
10 | Rzehak R. Modeling of mass-transfer in bubbly flows encompassing different mechanisms[J]. Chemical Engineering Science, 2016, 151: 139-143. |
11 | Sheng L, Chang Y, Wang J J, et al. Remarkable improvement of gas-liquid mass transfer by modifying the structure of conventional T-junction microchannel[J]. AIChE Journal, 2023, 69(7): 18089. |
12 | Chen Y C, Sheng L, Deng J, et al. Geometric effect on gas-liquid bubbly flow in capillary-embedded T-junction microchannels[J]. Industrial & Engineering Chemistry Research, 2021, 60(12): 4735-4744. |
13 | Wang Z H, Ding W B, Fan Y W, et al. Design of improved flow-focusing microchannel with constricted continuous phase inlet and study of fluid flow characteristics[J]. Micromachines, 2022, 13(10): 1776. |
14 | Keblinski P, Phillpot S R, Choi S U S, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J]. International Journal of Heat and Mass Transfer, 2002, 45(4): 855-863. |
15 | Darvanjooghi M H K, Esfahany M N, Esmaeili-Faraj S H. Investigation of the effects of nanoparticle size on CO2 absorption by silica-water nanofluid[J]. Separation and Purification Technology, 2018, 195: 208-215. |
16 | Yu W, Wang T, Park A H A, et al. Review of liquid nano-absorbents for enhanced CO2 capture[J]. Nanoscale, 2019, 11(37): 17137-17156. |
17 | Valeh-e-Sheyda P, Afshari A. A detailed screening on the mass transfer modeling of the CO2 absorption utilizing silica nanofluid in a wetted wall column[J]. Process Safety and Environmental Protection, 2019, 127: 125-132. |
18 | Thulasidas T C, Abraham M A, Cerro R L. Bubble-train flow in capillaries of circular and square cross section[J]. Chemical Engineering Science, 1995, 50(2): 183-199. |
19 | Fries D M, Trachsel F, von Rohr P R. Segmented gas-liquid flow characterization in rectangular microchannels[J]. International Journal of Multiphase Flow, 2008, 34(12): 1108-1118. |
20 | Wu Y N, Fu T T, Zhu C Y, et al. Asymmetrical breakup of bubbles at a microfluidic T-junction divergence: feedback effect of bubble collision[J]. Microfluidics and Nanofluidics, 2012, 13(5): 723-733. |
21 | van Steijn V, Kleijn C R, Kreutzer M T. Flows around confined bubbles and their importance in triggering pinch-off[J]. Physical Review Letters, 2009, 103(21): 214501. |
22 | Piroird K, Lorenceau É. Capillary flow of oil in a single foam microchannel[J]. Physical Review Letters, 2013, 111(23): 234503. |
23 | Cai W F, Zhang J, Zhang X B, et al. Enhancement of CO2 absorption under Taylor flow in the presence of fine particles[J]. Chinese Journal of Chemical Engineering, 2013, 21(2): 135-143. |
24 | Kluytmans J H J, van Wachem B G M, Kuster B F M, et al. Mass transfer in sparged and stirred reactors: influence of carbon particles and electrolyte[J]. Chemical Engineering Science, 2003, 58(20): 4719-4728. |
25 | Vandu C O, Liu H, Krishna R. Mass transfer from Taylor bubbles rising in single capillaries[J]. Chemical Engineering Science, 2005, 60(22): 6430-6437. |
26 | Rettich T R, Battino R, Wilhelm E. Solubility of gases in liquids. ⅩⅥ. Henry’s law coefficients for nitrogen in water at 5 to 50℃[J]. Journal of Solution Chemistry, 1984, 13(5): 335-348. |
27 | Abiev R S. Simulation of the slug flow of a gas-liquid system in capillaries[J]. Theoretical Foundations of Chemical Engineering, 2008, 42(2): 105-117. |
28 | Abiev R S. Modeling of pressure losses for the slug flow of a gas-liquid mixture in mini- and microchannels[J]. Theoretical Foundations of Chemical Engineering, 2011, 45(2): 156-163. |
29 | Kreutzer M T, Kapteijn F, Moulijn J A, et al. Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels[J]. Chemical Engineering Science, 2005, 60(22): 5895-5916. |
30 | Sheng L, Chen Y C, Deng J, et al. High-frequency formation of bubble with short length in a capillary embedded step T-junction microdevice[J]. AIChE Journal, 2021, 67(11): 17376. |
31 | Wang K, Lu Y C, Xu J H, et al. Generation of micromonodispersed droplets and bubbles in the capillary embedded T-junction microfluidic devices[J]. AIChE Journal, 2011, 57(2): 299-306. |
32 | Xu J H, Li S W, Wang Y J, et al. Controllable gas-liquid phase flow patterns and monodisperse microbubbles in a microfluidic T-junction device[J]. Applied Physics Letters, 2006, 88(13): 133506. |
33 | Sheng L, Ma L, Chen Y C, et al. A comprehensive study of droplet formation in a capillary embedded step T-junction: from squeezing to jetting[J]. Chemical Engineering Journal, 2022, 427: 132067. |
34 | Zhao Y C, Chen G W, Ye C B, et al. Gas-liquid two-phase flow in microchannel at elevated pressure[J]. Chemical Engineering Science, 2013, 87: 122-132. |
35 | Zhu C Y, Lu Y T, Fu T T, et al. Experimental investigation on gas-liquid mass transfer with fast chemical reaction in microchannel[J]. International Journal of Heat and Mass Transfer, 2017, 114: 83-89. |
36 | Ma D F, Zhu C Y, Fu T T, et al. Synergistic effect of functionalized ionic liquid and alkanolamines mixed solution on enhancing the mass transfer of CO2 absorption in microchannel[J]. Chemical Engineering Journal, 2021, 417: 129302. |
37 | Korczyk P M, van Steijn V, Blonski S, et al. Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels[J]. Nature Communications, 2019, 10: 2528. |
38 | Haase S. Characterisation of gas-liquid two-phase flow in minichannels with co-flowing fluid injection inside the channel (Ⅱ): Gas bubble and liquid slug lengths, film thickness, and void fraction within Taylor flow[J]. International Journal of Multiphase Flow, 2017, 88: 251-269. |
39 | Salman W, Gavriilidis A, Angeli P. On the formation of Taylor bubbles in small tubes[J]. Chemical Engineering Science, 2006, 61(20): 6653-6666. |
40 | Abiev R S. Gas-liquid and gas-liquid-solid mass transfer model for Taylor flow in micro (milli) channels: a theoretical approach and experimental proof[J]. Chemical Engineering Journal Advances, 2020, 4: 100065. |
41 | Abiev R S, Butler C, Cid E, et al. Mass transfer characteristics and concentration field evolution for gas-liquid Taylor flow in milli channels[J]. Chemical Engineering Science, 2019, 207: 1331-1340. |
42 | Woo M, Tischer S, Deutschmann O, et al. A step toward the numerical simulation of catalytic hydrogenation of nitrobenzene in Taylor flow at practical conditions[J]. Chemical Engineering Science, 2021, 230: 116132. |
43 | Peng Z B, Gai S L, Barma M, et al. Experimental study of gas-liquid-solid flow characteristics in slurry Taylor flow-based multiphase microreactors[J]. Chemical Engineering Journal, 2021, 405: 126646. |
44 | Bahmanyar A, Khoobi N, Mozdianfard M R, et al. The influence of nanoparticles on hydrodynamic characteristics and mass transfer performance in a pulsed liquid-liquid extraction column[J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(11/12): 1198-1206. |
45 | Alper E, Wichtendahl B, Deckwer W D. Gas absorption mechanism in catalytic slurry reactors[J]. Chemical Engineering Science, 1980, 35(1/2): 217-222. |
46 | Farzani Tolesorkhi S, Esmaeilzadeh F, Riazi M. Experimental and theoretical investigation of CO2 mass transfer enhancement of silica nanoparticles in water[J]. Petroleum Research, 2018, 3(4): 370-380. |
47 | Nagy E, Feczkó T, Koroknai B. Enhancement of oxygen mass transfer rate in the presence of nanosized particles[J]. Chemical Engineering Science, 2007, 62(24): 7391-7398. |
[1] | Yuting ZHENG, Guandong FANG, Mengbo ZHANG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on micro-chemical rectification and separation technology [J]. CIESC Journal, 2024, 75(1): 47-59. |
[2] | Yating LI, Zhongdong WANG, Yanpeng DONG, Chunying ZHU, Youguang MA, Taotao FU. Research progress of capillary flow in microchannels and its engineering application [J]. CIESC Journal, 2024, 75(1): 159-170. |
[3] | Yizhou CUI, Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow [J]. CIESC Journal, 2024, 75(1): 197-210. |
[4] | Junnan WANG, Chengxiang HE, Zhongdong WANG, Chunying ZHU, Youguang MA, Taotao FU. Numerical simulation of homogeneous mixing in T-junction micromixers [J]. CIESC Journal, 2024, 75(1): 242-254. |
[5] | Weigu WEN, Zhihong YUAN, Kai WANG, Guangsheng LUO. Microdispersion droplet optical fiber detection [J]. CIESC Journal, 2024, 75(1): 211-220. |
[6] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[7] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[12] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[13] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[14] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[15] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||