CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 221-230.DOI: 10.11949/0438-1157.20230601

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels

Ruohan ZHAO1(), Mengmeng HUANG1, Chunying ZHU1(), Taotao FU1, Xiqun GAO2, Youguang MA1   

  1. 1.State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2.Yifang Industry Corporation, Liaoyang Petrochemical Fiber Company, Liaoyang 111003, Liaoning, China
  • Received:2023-06-20 Revised:2023-08-28 Online:2024-03-11 Published:2024-01-25
  • Contact: Chunying ZHU

缩口T型微通道内纳米流体吸收CO2的流动与传质研究

赵若晗1(), 黄蒙蒙1, 朱春英1(), 付涛涛1, 高习群2, 马友光1   

  1. 1.天津大学化工学院,化学工程联合国家重点实验室,天津 300072
    2.辽阳石油化纤公司亿方工业公司,辽宁 辽阳 111003
  • 通讯作者: 朱春英
  • 作者简介:赵若晗(1999—),女,硕士研究生,2021207330@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(21978197)

Abstract:

A gas-phase necked T-shaped microchannel was constructed, and the gas-liquid two-phase flow and mass transfer performance of silicon dioxide (SiO2) nanofluids in the process of CO2 absorption were studied. In the experimental range, the bubbly flow, beaded bubble flow, compact slug flow, and slug-annular flow were observed. With the increase of gas phase flow rate, the bubble formation frequency f and the specific surface area a of bubbly flow increase rapidly, f and a of beaded bubble flow change little, and f and a of compact slug flow gradually decrease. Moreover, the liquid-phase volumetric mass transfer coefficient showed an increasing trend with the rise of the flow rate of both continuous and dispersed phases and the nanoparticle concentration in the liquid. Compared to the equal width T-channel, the maximal specific surface area of the microchannel with the narrow gas-phase inlet increased by 29.6%. It is shown that the reduction effect of gas phase inlet can effectively increase the mass transfer area of gas-liquid two-phase flow, which is conducive to the improvement of gas-liquid mass transfer performance.

Key words: CO2 capture, nanofluids, microchannel, mass transfer, process enhancement

摘要:

构建了一种气相缩口的T型微通道,研究了二氧化硅(SiO2)纳米流体吸收CO2过程的气液两相流动与传质性能。在实验范围内,观察到了泡状流、串珠流、紧密弹状流和弹状-环状流。随着气相流速的增加,泡状流的气泡生成频率f和比表面积a快速增大,串珠流的fa变化很小,紧密弹状流的fa逐渐减小。随着连续相和分散相流速的增大以及纳米颗粒浓度的升高,液侧体积传质系数均表现出增大的趋势。与等宽T型通道相比,缩口T型微通道的最大比表面积增幅达29.6%。结果表明气相入口的缩径效应可有效提高气液两相流的传质面积,有利于气液传质性能的改善和提高。

关键词: 二氧化碳捕集, 纳米流体, 微通道, 传质, 过程强化

CLC Number: