CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1830-1842.DOI: 10.11949/0438-1157.20231121
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yifei LI1,2(), Xinyu DONG2, Weishu WANG1, Lu LIU2(), Yifan ZHAO2
Received:
2023-10-31
Revised:
2023-12-17
Online:
2024-06-25
Published:
2024-05-25
Contact:
Lu LIU
李怡菲1,2(), 董新宇2, 王为术1, 刘璐2(), 赵一璠2
通讯作者:
刘璐
作者简介:
李怡菲(2001—),女,硕士研究生,16634862916@163.com
基金资助:
CLC Number:
Yifei LI, Xinyu DONG, Weishu WANG, Lu LIU, Yifan ZHAO. Numerical study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate[J]. CIESC Journal, 2024, 75(5): 1830-1842.
李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842.
Add to citation manager EndNote|Ris|BibTeX
材料参数 | CO2 | 干冰 | 铜(模拟热源) | 保温材料 |
---|---|---|---|---|
密度/(kg/m3) | 1.7878 | 1562 | 8978 | 1818 |
热导率/(W/(m·K)) | 0.0145 | 0.086 | 387.6 | 0.288 |
比热容/(J/(kg·K)) | 54.55 | 381 | 800 |
Table 1 Material parameter settings
材料参数 | CO2 | 干冰 | 铜(模拟热源) | 保温材料 |
---|---|---|---|---|
密度/(kg/m3) | 1.7878 | 1562 | 8978 | 1818 |
热导率/(W/(m·K)) | 0.0145 | 0.086 | 387.6 | 0.288 |
比热容/(J/(kg·K)) | 54.55 | 381 | 800 |
Fig.10 Distribution laws of temperature, cooling heat flux and heat transfer coefficient on heat source upper surface under different injection conditions
Fig.11 Distribution of upper surface temperature, cooling heat flux and heat transfer coefficient on micro-ribbed plate under different injection conditions
Fig.13 Changes in average surface temperature and heat transfer coefficient on simulated heat source micro-ribbed plates under different nozzle inlet flow rates
1 | 王军. 阵列喷雾冷却换热特性及表面温度均匀性实验研究[D]. 南京: 南京理工大学, 2016. |
Wang J. Experimental research on heat transfer performance and surface temperature uniformity in array spray cooling[D]. Nanjing: Nanjing University of Science and Technology, 2016. | |
2 | 袁修干. 高性能军用机环境控制系统研究发展趋势的探讨[J]. 航空学报, 1999, 20(S1): 2-4. |
Yuan X G. Discussion on the research and development trend of high performance military aircraft environmental control system[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(S1): 2-4. | |
3 | Rvbicki J R, Mudawar I. Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays[J]. International Journal of Heat and Mass Transfer, 2006, 49(1-2): 5-16. |
4 | 孙少鹏. 高热通量电子元件喷雾相变冷却系统的研究[D]. 重庆: 重庆大学, 2010. |
Sun S P. Research on spray cooling system for electronics with high heat flux[D]. Chongqing: Chongqing University, 2010. | |
5 | 周乐平, 唐大为, 杜小泽, 等. 大功率激光武器及其冷却系统[J]. 激光武器, 2007, 44 (8): 34-38. |
Zhou L P, Tang D W, Du X Z, et al. High-power laser weapon and its cooling system[J]. Laser Weapon, 2007, 44(8): 34-38. | |
6 | Paris M R, Chow L C, Mathefdey E T. Surface roughness and its effects on the heat transfer mechanism in spray cooling[J]. Experiment Heat Transfer, 1992(114): 211-219. |
7 | Visaria M, Mudawar I. Application of two-phase spray cooling for thermal management of electronic devices[C]//2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Orlando, FL, USA. IEEE, 2008: 275-283. |
8 | 姚寿广, 马哲树, 罗林, 等. 电子电器设备中高效热管散热技术的研究现状及发展[J]. 华东船舶工业学院学报(自然科学版), 2003, 17(4): 9-12. |
Yao S G, Ma Z S, Luo L, et al. Improvement of heat pipe technique for high heat flux electronics cooling[J]. Journal of East China Shipbuilding Institute (Natural Science Edition), 2003, 17(4): 9-12. | |
9 | 纪绍斌, 李生生. 热管技术的应用与发展[J]. 山西建筑, 2005, 31(13): 140-141. |
Ji S B, Li S S. Application and development of heat pipes[J]. Shanxi Architecture, 2005, 31(13): 140-141. | |
10 | Thiangtham P, Keepaiboon C, Kiatpachai P, et al. An experimental study on two-phase flow patterns and heat transfer characteristics during boiling of R134a flowing through a multi-microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2016, 98: 390-400. |
11 | 亓帅兵, 谢雪松, 郭海霞, 等. 基于微通道相变散热器的热控系统研究[J]. 电子设计工程, 2019, 27(18): 1-5. |
Qi S B, Xie X S, Guo H X, et al. Research on thermal control system based on microchannel phase change radiator[J]. Electronic Design Engineering, 2019, 27(18): 1-5. | |
12 | 季爱林, 钟剑锋, 帅立国. 大热通量电子设备的散热方法[J]. 电子机械工程, 2013, 29(6): 30-35. |
Ji A L, Zhong J F, Shuai L G. Cooling measures of high flux electronic equipment[J]. Electro-Mechanical Engineering, 2013, 29(6): 30-35. | |
13 | Smakulski P, Pietrowicz S. A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques[J]. Applied Thermal Engineering, 2016, 104: 636-646. |
14 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
15 | 刘一兵, 黄新民, 刘安宁, 等. 基于电子散热新技术的研究[J]. 低温与超导, 2008, 36(3): 54-57, 61. |
Liu Y B, Huang X M, Liu A N, et al. Research based on new heat release technology of electron[J]. Cryogenics and Superconductivity, 2008, 36(3): 54-57, 61. | |
16 | 余勇胜. 氨喷雾相变冷却传热特性研究[D]. 重庆: 重庆大学, 2011. |
Yu Y S. Performance and heat transfer characteristics of evaporative spray cooling with ammonia[D]. Chongqing: Chongqing University, 2011. | |
17 | Bostanci H, Saarloos B A, Rini D P, et al. Spray cooling with ammonia on micro-structured surfaces[C]//2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Orlando, FL, USA: IEEE, 2008: 290-295. |
18 | Yang J, Chow L C, Pais M R. Nucleate boiling heat transfer in spray cooling[J]. Journal of Heat Transfer, 1996, 118(3): 668-671. |
19 | Mudawar I, Estes K A. Optimizing and predicting CHF in spray cooling of a square surface[J]. Journal of Heat Transfer, 1996, 118(3): 672-679. |
20 | Lin L C, Ponnappan R. Heat transfer characteristics of spray cooling in a closed loop[J]. International Journal of Heat and Mass Transfer, 2003, 46(20): 3737-3746. |
21 | Pais M, Tilton D, Chow L, et al. High-heat-flux, low-superheat evaporative spray cooling[C]//Proceedings of the 27th Aerospace Sciences Meeting. Reno, NV, USA. Reston, Virigina: AIAA, 1989: AIAA1989-241. |
22 | Chow L, Mahefkey E. High power density evaporative cooling[C]//Proceedings of the 22nd Thermophysics Conference. Honolulu, HI, USA. Reston, Virigina: AIAA, 1987: AIAA1987-1536. |
23 | Hsieh C C, Yao S C. Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces[J]. International Journal of Heat and Mass Transfer, 2006, 49(5/6): 962-974. |
24 | Silk E A. Investigation of enhanced surface spray cooling[D]. Park: University of Maryland, 2006. |
25 | Mudawar I. Assessment of high-heat-flux thermal management schemes[J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 122-141. |
26 | Mudawar I, Bowers M B. Ultra-high critical heat flux (CHF) for subcooled water flow boiling (Ⅰ): CHF data and parametric effects for small diameter tubes[J]. International Journal of Heat and Mass Transfer, 1999, 42(8): 1405-1428. |
27 | Qiu Y H, Liu Z H. Critical heat flux of steady boiling for saturated liquids jet impinging on the stagnation zone[J]. International Journal of Heat and Mass Transfer, 2005, 48(21/22): 4590-4597. |
28 | 周年勇, 冯浩, 许泓烨, 等. R134a闭式喷雾冷却传热性能实验研究[J]. 制冷学报, 2021, 42(3): 152-158. |
Zhou N Y, Feng H, Xu H Y, et al. Experimental study on heat transfer performance of closed-loop spray cooling using R134a[J]. Journal of Refrigeration, 2021, 42(3): 152-158. | |
29 | Kim D, Lee J. Experimental investigation of CO2 dry-ice assisted jet impingement cooling[J]. Applied Thermal Engineering, 2016, 107: 927-935. |
30 | Panão M R O, Costa J J, Bernardo M R F. Thermal assessment of sublimation cooling with dry-ice sprays[J]. International Journal of Heat and Mass Transfer, 2018, 118: 518-526. |
31 | Li J X, Li Y Z, Li E H, et al. Experimental investigation of spray-sublimation cooling system with CO2 dry-ice particles[J]. Applied Thermal Engineering, 2020, 174: 115285. |
32 | Coursey J S, Kim J, Kiger K T. Spray cooling of high aspect ratio open microchannels[C]//Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems. San Diego, 2006: 188-195. |
33 | Pautsch A, Shedd T. Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72[J]. International Journal of Heat and Mass Transfer, 2005, 48(15): 3167-3175. |
34 | Shedd T, Pautsch A. Spray impingement cooling with single- and multiple-nozzle arrays (Part Ⅱ): Visualization and empirical models[J]. International Journal of Heat and Mass Transfer, 2005, 48(15): 3176-3184. |
35 | Estes K A, Mudawar I. Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces[J]. International Journal of Heat and Mass Transfer, 1995, 38(16): 2985-2996. |
36 | Visaria M, Mudawar I. A systematic approachto predicting critical heat flux for inclined sprays[J]. Journal of Electronic Packaging, 2007, 129(4): 452-459. |
[1] | Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame [J]. CIESC Journal, 2024, 75(5): 2081-2090. |
[2] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[3] | Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam [J]. CIESC Journal, 2024, 75(5): 1765-1776. |
[4] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[5] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[6] | Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance [J]. CIESC Journal, 2024, 75(5): 2026-2035. |
[7] | Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling [J]. CIESC Journal, 2024, 75(5): 1777-1786. |
[8] | Jinpeng ZHAO, Yongmin ZHANG, Bin LAN, Jiewen LUO, Bidan ZHAO, Junwu WANG. Model development and validation of structural two-fluid model for heat transfer in a gas-solid bubbling fluidized bed [J]. CIESC Journal, 2024, 75(4): 1497-1507. |
[9] | Xiaoying JI, Yuan ZHENG, Xiaopeng LI, Zhen YANG, Wei ZHANG, Shirui QIU, Qianying ZHANG, Canghai LUO, Dongpeng SUN, Dong CHEN, Dongliang LI. Controlled preparation of droplets, particles and capsules by microfluidics and their applications [J]. CIESC Journal, 2024, 75(4): 1455-1468. |
[10] | Shiliang GU, Boren TAN, Quanzhong CHENG, Weijie YAO, Zhipeng DONG, Feng XU, Yong WANG. Numerical simulation of hydraulic characteristics in axial flow pump type mixer [J]. CIESC Journal, 2024, 75(3): 815-822. |
[11] | Baiping XU, Ruifeng LIANG, Huiwen YU, Guiqun WU, Shuping XIAO. Simulation of intra-cavity distribution mixing under the action of enhanced triangular rotor of twin-screw extruder [J]. CIESC Journal, 2024, 75(3): 858-866. |
[12] | Zhicheng DENG, Shifeng XU, Qidong WANG, Jiarui WANG, Simin WANG. Process and energy consumption analysis of high salt and high COD wastewater treatment by submerged combustion [J]. CIESC Journal, 2024, 75(3): 1000-1008. |
[13] | Nan TU, Xiaoqun LIU, Chiyu WANG, Jiabin FANG. Study on adaptability of scaling law to residence time distribution in bubbling fluidized beds with continuous operation [J]. CIESC Journal, 2024, 75(2): 543-552. |
[14] | Yizhou CUI, Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow [J]. CIESC Journal, 2024, 75(1): 197-210. |
[15] | Yao ZHOU, Xiaoping YANG, Yicheng NI, Jiping LIU, Jinjia WEI, Junjie YAN. Numerical simulation of two-phase steam ejector applied in novel loop heat pipe [J]. CIESC Journal, 2024, 75(1): 268-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||