CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1777-1786.DOI: 10.11949/0438-1157.20231228
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Fan LIU1(), Yuantong ZHANG2, Cheng TAO1, Chengyu HU2, Xiaoping YANG2(), Jinjia WEI2
Received:
2023-11-27
Revised:
2024-02-22
Online:
2024-06-25
Published:
2024-05-25
Contact:
Xiaoping YANG
刘帆1(), 张芫通2, 陶成1, 胡成玉2, 杨小平2(), 魏进家2
通讯作者:
杨小平
作者简介:
刘帆(1982—),男,硕士研究生,高级工程师,liu.fan@zte.com.cn
基金资助:
CLC Number:
Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling[J]. CIESC Journal, 2024, 75(5): 1777-1786.
刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值模拟参数值 | 对比实验参数值 |
---|---|---|
芯片面积/mm2 | 2.5×3 | 2.5×3 |
总功率/W | 2000~2500 | 2500 |
工质 | 去离子水 | 去离子水 |
入口温度Tin/℃ | 25 | 25 |
入口流量 Gin/(L/min) | 1~6 | 1~6 |
流入流出分液板厚hn/mm | 2 | 2 |
微针翅尺寸 | ||
边长dpin(长、宽)= 间隙wpin/μm | 100~600 | 200 |
高度hpin/μm | 200~1200 | 600 |
射流腔尺寸 | ||
射流孔规格 | 5×7 | 5×7 |
射流孔直径/mm | 2 | 2 |
排液孔宽度/mm | 2.5 | 2.5 |
射流腔高度hjet/μm | 200~2400 | 1000 |
歧管层尺寸 | ||
流道高度 hc/mm | 2 | 2 |
Table 1 Boundary conditions of numerical simulation and experimental test of novel manifold microchannel heat sink
参数 | 数值模拟参数值 | 对比实验参数值 |
---|---|---|
芯片面积/mm2 | 2.5×3 | 2.5×3 |
总功率/W | 2000~2500 | 2500 |
工质 | 去离子水 | 去离子水 |
入口温度Tin/℃ | 25 | 25 |
入口流量 Gin/(L/min) | 1~6 | 1~6 |
流入流出分液板厚hn/mm | 2 | 2 |
微针翅尺寸 | ||
边长dpin(长、宽)= 间隙wpin/μm | 100~600 | 200 |
高度hpin/μm | 200~1200 | 600 |
射流腔尺寸 | ||
射流孔规格 | 5×7 | 5×7 |
射流孔直径/mm | 2 | 2 |
排液孔宽度/mm | 2.5 | 2.5 |
射流腔高度hjet/μm | 200~2400 | 1000 |
歧管层尺寸 | ||
流道高度 hc/mm | 2 | 2 |
1 | van Erp R, Soleimanzadeh R, Nela L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585: 211-216. |
2 | Kanduri A, Rahmani A M, Liljeberg P, et al. A perspective on dark silicon[M]//Rahmani A, Liljeberg P, Hemani A, et al. The Dark Side of Silicon. Cham: Springer, 2017: 3-20. |
3 | Hardavellas N, Ferdman M, Falsafi B, et al. Toward dark silicon in servers[J]. IEEE Micro, 2011, 31(4): 6-15. |
4 | Garimella S V, Fleischer A S, Murthy J Y, et al. Thermal challenges in next-generation electronic systems[J]. IEEE Transactions on Components and Packaging Technologies, 2008, 31(4): 801-815. |
5 | Fan Y, Winkel C, Kulkarni D, et al. Analytical design methodology for liquid based cooling solution for high TDP CPUs[C]//2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). San Diego, CA, USA:IEEE, 2018: 582-586. |
6 | Sun Y F, Agostini N B, Dong S, et al. Summarizing CPU and GPU design trends with product data[EB/OL]. 2019, arXiv: . |
7 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
8 | Brunschwiler T, Michel B, Rothuizen H, et al. Interlayer cooling potential in vertically integrated packages[J]. Microsystem Technologies, 2009, 15(1): 57-74. |
9 | Harpole G M, Eninger J E. Micro-channel heat exchanger optimization[C]//1991 Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium. Phoenix, AZ, USA: IEEE, 2002: 59-63. |
10 | Zhang X, JI Z, Wang J, et al. Research progress on structural optimization design of microchannel heat sinks applied to electronic devices[J]. Applied Thermal Engineering, 2023, 235: 121294. |
11 | Sarkas S, Gupta R, Roy T, et al. Review of jet impingement cooling of electronic devices: emerging role of surface engineering[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123888. |
12 | 杨宇驰, 吕佩珏, 杜建宇, 等. 大面积处理芯片嵌入式微流体冷却技术[J]. 微电子学与计算机, 2023, 40(1): 105-123. |
Yang Y C, Lyu P J, Du J Y, et al. Embedded microfluidic cooling technology for large-area processing chips[J]. Microelectronics & Computer, 2023, 40(1): 105-123. | |
13 | Brunschwiler T, Rothuizen H, Fabbri M, et al. Direct liquid jet-impingment cooling with micron-sized nozzle array and distributed return architecture[C]// Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. IEEE, 2006: 196-203. |
14 | Luo Y, Zhang J Z, Li W. A comparative numerical study on two-phase boiling fluid flow and heat transfer in the microchannel heat sink with different manifold arrangements[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119864. |
15 | Lin Y H, Luo Y, Li W, et al. Single-phase and two-phase flow and heat transfer in microchannel heat sink with various manifold arrangements[J]. International Journal of Heat and Mass Transfer, 2021, 171:121118. |
16 | Tong J C K, Sparrow E M, Abraham J P. Geometric strategies for attainment of identical outflows through all of the exit ports of a distribution manifold in a manifold system[J]. Applied Thermal Engineering, 2009, 29(17): 3552-3560. |
17 | Sharma C S, Schlottig G, Brunschwiler T, et al. A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: an experimental study[J]. International Journal of Heat and Mass Transfer, 2015, 88: 684-694. |
18 | Zhang J, An J, Xin G, et al. Thermal and hydrodynamic characteristics of single-phase flow in manifold microchannels with countercurrent regions[J]. International Journal of Heat and Mass Transfer, 2023, 211: 124265. |
19 | Chen C, Wang X, Yuan B, et al. Investigation of flow and heat transfer performance of the manifold microchannel with different manifold arrangements[J]. Case Studies in Thermal Engineering, 2022, 34: 102073. |
20 | Tang W Y, Li J Y, Wu Z, et al. A numerical investigation of the thermal-hydraulic performance during subcooled flow boiling in MMCs with different manifolds[J]. Applied Thermal Engineering, 2024, 236: 121820. |
21 | Yang M, Cao B Y. Numerical study on flow and heat transfer of a hybrid microchannel cooling scheme using manifold arrangement and secondary channels[J]. Applied Thermal Engineering, 2019, 159: 113896. |
22 | Pan Y H, Zhao R, Fan X H, et al. Study on the effect of varying channel aspect ratio on heat transfer performance of manifold microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 163(1):120461-120461. |
23 | Chen C W, Li F, Wang X Y, et al. Improvement of flow and heat transfer performance of manifold microchannel with porous fins[J]. Applied Thermal Engineering, 2022, 206: 118129. |
24 | Yuan Y, Chen L, Zhang C D, et al. Numerical investigation of flow boiling heat transfer in manifold microchannels[J]. Applied Thermal Engineering, 2022, 217: 119268. |
25 | Chen H R, Han Y, Tang G Y. Numerical investigation of the optimization on manifold microchannel heat sink towards the water-cooling limit[C]//2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC). Singapore:IEEE, 2021: 513-518. |
26 | Pan Y H, Zhao R, Nian Y L, et al. Numerical study on heat transfer characteristics of a pin-fin staggered manifold microchannel heat sink[J]. Applied Thermal Engineering, 2023, 219: 119436. |
27 | Han Y, Lau B L, Tang G, la et. Si-based hybrid microcooler with multiple drainage microtrenches for high heat flux cooling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(1): 50-57. |
28 | Hazra S, Wei T W, Lin Y, et al. Parametric design analysis of a multi-level 3D manifolded microchannel cooler via reduced order numerical modeling[J]. International Journal of Heat and Mass Transfer, 2022, 197: 123356. |
29 | Gilmore N, Hassanzadeh-Barforoushi A, Timchenko V, et al. Manifold configurations for uniform flow via topology optimisation and flow visualisation[J]. Applied Thermal Engineering, 2021, 183: 116227. |
30 | Tang W, Sun L, Liu H, et al. Improvement of flow distribution and heat transfer performance of a self-similarity heat sink with a modification to its structure[J]. Applied Thermal Engineering, 2017, 121: 163-171. |
31 | Piazza A, Hazra S, Jung K W, et al. Considerations and challenges for large area embedded micro-channels with 3D manifold in high heat flux power electronics applications[C]//2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA. IEEE, 2020: 77-82. |
[1] | Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance [J]. CIESC Journal, 2024, 75(5): 2026-2035. |
[2] | Yuhui SHI, Jiyuan XING, Xuehan JIANG, Shuang YE, Weiguang HUANG. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM [J]. CIESC Journal, 2024, 75(5): 1816-1829. |
[3] | Yifei LI, Xinyu DONG, Weishu WANG, Lu LIU, Yifan ZHAO. Numerical study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate [J]. CIESC Journal, 2024, 75(5): 1830-1842. |
[4] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[5] | Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame [J]. CIESC Journal, 2024, 75(5): 2081-2090. |
[6] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[7] | Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam [J]. CIESC Journal, 2024, 75(5): 1765-1776. |
[8] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[9] | Jinpeng ZHAO, Yongmin ZHANG, Bin LAN, Jiewen LUO, Bidan ZHAO, Junwu WANG. Model development and validation of structural two-fluid model for heat transfer in a gas-solid bubbling fluidized bed [J]. CIESC Journal, 2024, 75(4): 1497-1507. |
[10] | Xiaoying JI, Yuan ZHENG, Xiaopeng LI, Zhen YANG, Wei ZHANG, Shirui QIU, Qianying ZHANG, Canghai LUO, Dongpeng SUN, Dong CHEN, Dongliang LI. Controlled preparation of droplets, particles and capsules by microfluidics and their applications [J]. CIESC Journal, 2024, 75(4): 1455-1468. |
[11] | Shiliang GU, Boren TAN, Quanzhong CHENG, Weijie YAO, Zhipeng DONG, Feng XU, Yong WANG. Numerical simulation of hydraulic characteristics in axial flow pump type mixer [J]. CIESC Journal, 2024, 75(3): 815-822. |
[12] | Baiping XU, Ruifeng LIANG, Huiwen YU, Guiqun WU, Shuping XIAO. Simulation of intra-cavity distribution mixing under the action of enhanced triangular rotor of twin-screw extruder [J]. CIESC Journal, 2024, 75(3): 858-866. |
[13] | Zhicheng DENG, Shifeng XU, Qidong WANG, Jiarui WANG, Simin WANG. Process and energy consumption analysis of high salt and high COD wastewater treatment by submerged combustion [J]. CIESC Journal, 2024, 75(3): 1000-1008. |
[14] | Wenkai CHENG, Jinyu YAN, Jiajun WANG, Lianfang FENG. Research progress of horizontal kneading reactor and its application in polymerization industry [J]. CIESC Journal, 2024, 75(3): 768-781. |
[15] | Xiaobin ZHAN, Huibin WANG, Yalong JIANG, Tielin SHI. Research on power consumption characteristics of high viscosity fluid mixing in acoustic resonance mixer [J]. CIESC Journal, 2024, 75(2): 531-542. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||