CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1167-1182.DOI: 10.11949/0438-1157.20231127
• Reviews and monographs • Previous Articles Next Articles
Zhouyang SHEN(), Kang XUE(), Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN()
Received:
2023-11-01
Revised:
2024-01-04
Online:
2024-06-06
Published:
2024-04-25
Contact:
Kang XUE, Lun PAN
申州洋(), 薛康(), 刘青, 史成香, 邹吉军, 张香文, 潘伦()
通讯作者:
薛康,潘伦
作者简介:
申州洋(1999—),男,硕士研究生,szy_0315@tju.edu.cn
基金资助:
CLC Number:
Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels[J]. CIESC Journal, 2024, 75(4): 1167-1182.
申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182.
Add to citation manager EndNote|Ris|BibTeX
Fig.5 (a) Schematic of the proposed enhancing mechanisms of n-C12H26 fuel decomposition in the presence of Pt@FGS;(b) MD snapshots for an example of H2 formation from the surface of Pt@FGS and the recovery of Pt-cluster on the FGS (cyan: C, white: H, red: O, and orange: Pt)[59]
Fig.7 Schematic of hyperbranched polyglycerol (HMS)[61] (a), hyperbranched polyethyleneimine (HPEI)[50] (b), and the synergistic catalytic cracking of decalin by hyperbranched poly(amidoamine)-encapsulated metal nanoparticles (HEMNs)[40] (c)
文献 | 纳米颗粒 | 燃料基液 | 温度/℃ | 压力/MPa | 转化率/% | 热沉/(MJ/kg) |
---|---|---|---|---|---|---|
[ | 钯 | 十氢萘 | 750 | 3.50 | 91.9 | 3.50 |
[ | 铂 | JP-10 | 680 | 4.00 | 55.2 | 2.70 |
[ | 铂 | 十氢萘 | 675 | 3.50 | 50.7 | 2.62 |
[ | 钯 | 十氢萘 | 725 | 4.00 | 77.0 | 3.61 |
[ | 铂 | 甲基环己烷 | 650 | 3.50 | 33.0 | 2.24 |
[ | 铂 | 甲基环己烷 | 650 | 3.50 | 61.5 | 2.39 |
Table 1 Cracking performance of precious metal nanofluid fuels
文献 | 纳米颗粒 | 燃料基液 | 温度/℃ | 压力/MPa | 转化率/% | 热沉/(MJ/kg) |
---|---|---|---|---|---|---|
[ | 钯 | 十氢萘 | 750 | 3.50 | 91.9 | 3.50 |
[ | 铂 | JP-10 | 680 | 4.00 | 55.2 | 2.70 |
[ | 铂 | 十氢萘 | 675 | 3.50 | 50.7 | 2.62 |
[ | 钯 | 十氢萘 | 725 | 4.00 | 77.0 | 3.61 |
[ | 铂 | 甲基环己烷 | 650 | 3.50 | 33.0 | 2.24 |
[ | 铂 | 甲基环己烷 | 650 | 3.50 | 61.5 | 2.39 |
文献 | 纳米颗粒 | 燃料基液 | 温度/℃ | 压力/MPa | 转化率/% | 热沉/(MJ/kg) |
---|---|---|---|---|---|---|
[ | Beta分子筛 | JP-10 | 700 | 4.00 | 63.2 | 2.80 |
[ | ZSM-5 | 正癸烷 | 758 | 3.00 | — | 4.64 |
Table 2 Cracking performance of molecular sieve nanofluid fuels
文献 | 纳米颗粒 | 燃料基液 | 温度/℃ | 压力/MPa | 转化率/% | 热沉/(MJ/kg) |
---|---|---|---|---|---|---|
[ | Beta分子筛 | JP-10 | 700 | 4.00 | 63.2 | 2.80 |
[ | ZSM-5 | 正癸烷 | 758 | 3.00 | — | 4.64 |
Fig.11 Reaction pathways for catalytic dehydrogenation by the oxygen-containing FGS, derived by ReaxFF MD simulations: (a) deprotonation/protonation, (b) regeneration, (c) reaction pathways for MCH containing added FGS held at 1700 K for 6.0 ns[90]
文献 | 纳米颗粒 | 燃料基液 | 温度/℃ | 压力/MPa | 转化率/% | 热沉/(MJ/kg) |
---|---|---|---|---|---|---|
[ | Pt@FGS | JP-10 | 420 | 4.00 | 48.5 | — |
[ | FGS | 甲基环己烷 | 547 | 4.70 | 64.2 | — |
Table 3 Cracking performance of graphene nanofluid fuels
文献 | 纳米颗粒 | 燃料基液 | 温度/℃ | 压力/MPa | 转化率/% | 热沉/(MJ/kg) |
---|---|---|---|---|---|---|
[ | Pt@FGS | JP-10 | 420 | 4.00 | 48.5 | — |
[ | FGS | 甲基环己烷 | 547 | 4.70 | 64.2 | — |
Fig.13 Molecular structure of C-undecyl calix[4]resorcinarene (a); TEM images of C-undecyl calix[4]resorcinarene-encapsulated Ni nanoparticles (b) and Ni-B nano-amorphous alloy (c)[93-94]
文献 | 纳米颗粒 | 燃料基液 | 温度/℃ | 压力/MPa | 转化率/% | 热沉/(MJ/kg) |
---|---|---|---|---|---|---|
[ | Ni/SiO2-A | 正癸烷 | 750 | 3.50 | 84.0 | 3.93 |
[ | Ni/SiO2 | 正癸烷 | 750 | 3.50 | — | 4.04 |
[ | ZSM-5@NiM | 正癸烷 | 780 | 3.00 | — | 4.59 |
Table 4 Cracking performance of transition metal nanofluid fuels
文献 | 纳米颗粒 | 燃料基液 | 温度/℃ | 压力/MPa | 转化率/% | 热沉/(MJ/kg) |
---|---|---|---|---|---|---|
[ | Ni/SiO2-A | 正癸烷 | 750 | 3.50 | 84.0 | 3.93 |
[ | Ni/SiO2 | 正癸烷 | 750 | 3.50 | — | 4.04 |
[ | ZSM-5@NiM | 正癸烷 | 780 | 3.00 | — | 4.59 |
1 | Edwards T. Liquid fuels and propellants for aerospace propulsion: 1903—2003[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107. |
2 | Edwards T. Cracking and deposition behavior of supercritical hydrocarbon aviation fuels[J]. Combustion Science and Technology, 2006, 178(1/2/3): 307-334. |
3 | Dinda S, Vuchuru K, Konda S, et al. Heat management in supersonic/hypersonic vehicles using endothermic fuel: perspective and challenges[J]. ACS Omega, 2021, 6(40): 26741-26755. |
4 | 贾贞健, 周伟星, 黄洪雁, 等. 碳氢燃料热裂解与引发裂解换热对比实验[J]. 化工学报, 2014, 65(S1): 138-143. |
Jia Z J, Zhou W X, Huang H Y, et al. Heat transfer of thermal cracking and initiated cracking of aviation kerosene[J]. CIESC Journal, 2014, 65(S1): 138-143. | |
5 | 侯淋, 刘青, 张香文. 面向高超声速飞行的碳氢燃料吸热反应研究进展[J]. 化学工业与工程, 2022, 39(5): 1-10. |
Hou L, Liu Q, Zhang X W. Progress on endothermic reactions of hydrocarbon fuel for hypersonic flight[J]. Chemical Industry and Engineering, 2022, 39(5): 1-10. | |
6 | Xu Q, Lin G W, Li H W. Evaluation model for fast convective heat transfer characteristics of thermal cracked hydrocarbon fuel regenerative cooling channel in hydrocarbon-fueled scramjet[J]. Applied Thermal Engineering, 2021, 199: 117616. |
7 | Li H, Liu G Z, Jiang R P, et al. Experimental and kinetic modeling study of exo-TCD pyrolysis under low pressure[J]. Combustion and Flame, 2015, 162(5): 2177-2190. |
8 | Huang S Z, Ruan B, Gao X W, et al. Numerical investigation on supercritical turbulent heat transfer of copper/n-decane nanofluid inside a miniature tube[J]. Numerical Heat Transfer, Part A: Applications, 2017, 72(12): 921-935. |
9 | Yue L, Lu X X, Chi H, et al. Heat-sink enhancement of decalin and aviation kerosene prepared as nanofluids with palladium nanoparticles[J]. Fuel, 2014, 121: 149-156. |
10 | Wang L, Diao Z H, Tian Y J, et al. Catalytic cracking of endothermic hydrocarbon fuels over ordered meso-HZSM-5 zeolites with Al-MCM-41 shells[J]. Energy & Fuels, 2016, 30(9): 6977-6983. |
11 | E X T F, Zhi X M, Zhang X W, et al. Ignition and combustion performances of high-energy-density jet fuels catalyzed by Pt and Pd nanoparticles[J]. Energy & Fuels, 2018, 32(2): 2163-2169. |
12 | Li S J, Yang Q M, Ye L H, et al. Effect of nanoparticle concentration on physical and heat-transfer properties and evaporation characteristics of graphite/n-decane nanofluid fuels[J]. ACS Omega, 2022, 7(4): 3284-3292. |
13 | Aboalhamayie A, Festa L, Ghamari M. Evaporation rate of colloidal droplets of jet fuel and carbon-based nanoparticles: effect of thermal conductivity[J]. Nanomaterials, 2019, 9(9): 1297. |
14 | 吴熙, 何桂金, 郭永胜, 等. 超支化聚合物稳定的JP-10基铂纳米流体燃料的制备与催化燃烧性能[J]. 含能材料, 2020, 28(5): 369-375. |
Wu X, He G J, Guo Y S, et al. Preparation and catalytic combustion of JP-10 based Pt nanofluid fuels stabilized by hyperbranched polymer[J]. Chinese Journal of Energetic Materials, 2020, 28(5): 369-375. | |
15 | Van Devener B, Anderson S L. Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3 [J]. Energy & Fuels, 2006, 20(5): 1886-1894. |
16 | Bello M N, Pantoya M L, Kappagantula K, et al. Reaction dynamics of rocket propellant with magnesium oxide nanoparticles[J]. Energy & Fuels, 2015, 29(9): 6111-6117. |
17 | Ghadimi A, Saidur R, Metselaar H S C. A review of nanofluid stability properties and characterization in stationary conditions[J]. International Journal of Heat and Mass Transfer, 2011, 54(17/18): 4051-4068. |
18 | Meyer J P, Adio S A, Sharifpur M, et al. The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models[J]. Heat Transfer Engineering, 2016, 37(5): 387-421. |
19 | Patra A K, Nayak M K, Misra A. Viscosity of nanofluids—a review[J]. International Journal of Thermofluid Science and Technology, 2020, 7(2): 070202. |
20 | Lee S, Choi S U S, Li S, et al. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. Journal of Heat Transfer, 1999, 121(2): 280-289. |
21 | Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[C]//1995 International Mechanical Engineering Congress and Exhibition. No. ANL/MSD/CP-84938; CONF-951135- 29. San Francisco, United States: Argonne National Laboratory, 1995. |
22 | Ojha P K, Karmakar S. Boron for liquid fuel engines—a review on synthesis, dispersion stability in liquid fuel, and combustion aspects[J]. Progress in Aerospace Sciences, 2018, 100: 18-45. |
23 | Popa I, Gillies G, Papastavrou G, et al. Attractive and repulsive electrostatic forces between positively charged latex particles in the presence of anionic linear polyelectrolytes[J]. The Journal of Physical Chemistry. B, 2010, 114(9): 3170-3177. |
24 | Missana T, Adell A. On the applicability of DLVO theory to the prediction of clay colloids stability[J]. Journal of Colloid and Interface Science, 2000, 230(1): 150-156. |
25 | Zhu D S, Li X F, Wang N, et al. Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids[J]. Current Applied Physics, 2009, 9(1): 131-139. |
26 | Hotze E M, Phenrat T, Lowry G V. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment[J]. Journal of Environmental Quality, 2010, 39(6): 1909-1924. |
27 | E X T F, Zhang Y, Zou J J, et al. Oleylamine-protected metal (Pt, Pd) nanoparticles for pseudohomogeneous catalytic cracking of JP-10 jet fuel[J]. Industrial & Engineering Chemistry Research, 2014, 53(31): 12312-12318. |
28 | Hwang Y, Lee J K, Lee J K, et al. Production and dispersion stability of nanoparticles in nanofluids[J]. Powder Technology, 2008, 186(2): 145-153. |
29 | Albin J, Shijo T. Energy, exergy and corrosion analysis of direct absorption solar collector employed with ultra-high stable carbon quantum dot nanofluid[J]. Renewable Energy, 2022, 181: 725-737. |
30 | 夏国栋, 周明正, 周利军, 等. Ag纳米流体浸没射流冲击换热特性[J]. 化工学报, 2011, 62(4): 916-921. |
Xia G D, Zhou M Z, Zhou L J, et al. Heat transfer of sub-merged jet impingement on pin-fin heat sinks with silver nanofluid[J]. CIESC Journal, 2011, 62(4): 916-921. | |
31 | Parsa M S, Yazdani A, Aberoumand H, et al. A critical analysis on the energy and exergy performance of photovoltaic/thermal (PV/T) system: the role of nanofluids stability and synthesizing method[J]. Sustainable Energy Technologies and Assessments, 2022, 51: 101887. |
32 | Chang H, Chang Y C. Fabrication of Al2O3 nanofluid by a plasma arc nanoparticles synthesis system[J]. Journal of Materials Processing Technology, 2008, 207(1/2/3): 193-199. |
33 | Smirnov V V, Kostritsa S A, Kobtsev V D, et al. Experimental study of combustion of composite fuel comprising n-decane and aluminum nanoparticles[J]. Combustion and Flame, 2015, 162(10): 3554-3561. |
34 | Amrute A P, De Bellis J, Felderhoff M, et al. Mechanochemical synthesis of catalytic materials[J]. Chemistry, 2021, 27(23): 6819-6847. |
35 | Li S J, Du H Z, Zhuo Z, et al. Dispersion stability, physical properties, and electrostatic breakup of surfactant-loaded aluminum/n-decane nanofluid fuel: nanoparticle size effect[J]. Energy & Fuels, 2020, 34(1): 1082-1092. |
36 | Brotton S J, Malek M J, Anderson S L, et al. Effects of acetonitrile-assisted ball-milled aluminum nanoparticles on the ignition of acoustically levitated exo-tetrahydrodicyclopentadiene (JP-10) droplets[J]. Chemical Physics Letters, 2020, 754: 137679. |
37 | Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system[J]. J. Chem. Soc., Chem. Commun., 1994(7): 801-802. |
38 | E X T F, Zhang Y, Zou J J, et al. Shape evolution in Brust-Schiffrin synthesis of Au nanoparticles[J]. Materials Letters, 2014, 118: 196-199. |
39 | Li D, Fang W J, Wang H Q, et al. Gold/oil nanofluids stabilized by a gemini surfactant and their catalytic property[J]. Industrial & Engineering Chemistry Research, 2013, 52(24): 8109-8113. |
40 | Ye D F, Zhao L, Bai S S, et al. New strategy for high-performance integrated catalysts for cracking hydrocarbon fuels[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40078-40090. |
41 | Liu G Z, Jia X K, Tian Y J, et al. Preparations and remarkable catalytic cracking performances of Pt@FGS/JP-10 nanofluids[J]. Fuel, 2019, 252: 228-237. |
42 | Balanta A, Godard C, Claver C. Pd nanoparticles for C-C coupling reactions[J]. Chemical Society Reviews, 2011, 40(10): 4973-4985. |
43 | Jeyakumar N, Narayanasamy B. Investigation of performance, emission, combustion characteristics of municipal waste plastic oil fueled diesel engine with nano fluids[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020: 1745958. |
44 | Praveena V, Martin M L J, Geo V E. Experimental characterization of CI engine performance, combustion and emission parameters using various metal oxide nanoemulsion of grapeseed oil methyl ester[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(6): 3441-3456. |
45 | E X T F, Pan L, Wang F, et al. Al-nanoparticle-containing nanofluid fuel: synthesis, stability, properties, and propulsion performance[J]. Industrial & Engineering Chemistry Research, 2016, 55(10): 2738-2745. |
46 | Piacenza E, Presentato A, Turner R J. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures[J]. Critical Reviews in Biotechnology, 2018, 38(8): 1137-1156. |
47 | Pelaz B, del Pino P, Maffre P, et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake[J]. ACS Nano, 2015, 9(7): 6996-7008. |
48 | Ao W, Gao Y, Zhou S, et al. Enhancing the stability and combustion of a nanofluid fuel with polydopamine-coated aluminum nanoparticles[J]. Chemical Engineering Journal, 2021, 418: 129527. |
49 | Zhang R Q, Zhai Z W, Wang L, et al. Heat sink enhancement of decalin by symmetrical imidazolium ionic liquid-capped metal nanoparticles[J]. Energy & Fuels, 2023, 37(9): 6545-6557. |
50 | Wu X, Ye D F, Jin S D, et al. Cracking of platinum/hydrocarbon nanofluids with hyperbranched polymer as stabilizer and initiator[J]. Fuel, 2019, 255: 115782. |
51 | Qin X M, Yang S H, Chen Y P, et al. Thermal conductivity and stability of hydrocarbon-based nanofluids with palladium nanoparticles dispersed by modified hyperbranched polyglycerol[J]. ACS Omega, 2020, 5(48): 31156-31163. |
52 | Liu Q, Jia T H, Pan L, et al. Relationship between molecular structure and pyrolysis performance for high-energy-density fuels[J]. Fuel, 2024, 358: 130342. |
53 | Vandewiele N M, Magoon G R, Van Geem K M, et al. Experimental and modeling study on the thermal decomposition of jet propellant-10[J]. Energy & Fuels, 2014, 28(8): 4976-4985. |
54 | 岳磊. 超临界条件下碳氢燃料的裂解及其热化学过程调控[D]. 杭州: 浙江大学, 2015. |
Yue L. Cracking and thermochemical process regulation of hydrocarbon fuels under supercritical conditions[D]. Hangzhou: Zhejiang University, 2015. | |
55 | Zhao H L, Meng F X, Guo W, et al. Pd/HZSM-5 coating catalyst for supercritical cracking of endothermic fuel[J]. Journal of Fuel Chemistry and Technology, 2008, 36(4): 462-467. |
56 | Zhang J, Cheng M, Jiao Y, et al. Enhanced cracking conversion of supercritical fuel over stabilized Pt nanoparticles supported SiO2-Al2O3 catalyst coating[J]. Applied Surface Science, 2021, 559: 149950. |
57 | Rahimi N, Karimzadeh R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review[J]. Applied Catalysis A: General, 2011, 398(1/2): 1-17. |
58 | Krumeich F, Ihli J, Shu Y Y, et al. Structural changes in deactivated fluid catalytic cracking catalysts determined by electron microscopy[J]. ACS Catalysis, 2018, 8(5): 4591-4599. |
59 | Sim H S, Yetter R A, Hong S, et al. Enhanced fuel decomposition in the presence of colloidal functionalized graphene sheet-supported platinum nanoparticles[J]. ACS Applied Energy Materials, 2020, 3(8): 7637-7648. |
60 | Yue L, Wu J Z, Gong Y, et al. Thermodynamic properties and pyrolysis performances of hydrocarbon-fuel-based nanofluids containing palladium nanoparticles[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 347-355. |
61 | Wu X, Chen X Y, Jin S D, et al. Highly stable macroinitiator/platinum/hydrocarbon nanofluids for efficient thermal management in hypersonic aircraft from synergistic catalysis[J]. Energy Conversion and Management, 2019, 198: 111797. |
62 | Zhang Q H, Zhang S G, Deng Y Q. Recent advances in ionic liquid catalysis[J]. Green Chemistry, 2011, 13(10): 2619-2637. |
63 | Migowski P, Dupont J. Catalytic applications of metal nanoparticles in imidazolium ionic liquids[J]. Chemistry, 2007, 13(1): 32-39. |
64 | Jeong B J, Shin M C, Park J H, et al. Catalytic cracking of methylcyclohexane over H-ZSM-5 zeolite and activated charcoal wall-coated microchannel reactor with wavy structure under supercritical conditions[J]. Journal of Industrial and Engineering Chemistry, 2022, 105: 502-512. |
65 | 白宇恩, 张彬瑞, 刘东阳, 等. ZSM-5分子筛酸性能和孔结构的协同作用对C5烯烃催化裂解性能的影响[J]. 化工学报, 2023, 74(1): 438-448. |
Bai Y E, Zhang B R, Liu D Y, et al. Influence of synergistic effect of acid properties and pore structure of ZSM-5 zeolite on the catalytic cracking performance of pentene[J]. CIESC Journal, 2023, 74(1): 438-448. | |
66 | 汪然明. HZSM-5和Y型分子筛催化正十二烷超临界裂解研究[D]. 天津: 天津大学, 2010. |
Wang R M. Supercritical catalytic cracking of n-dodecane on HZSM-5 and Y zeolites[D]. Tianjin: Tianjin University, 2010. | |
67 | Bao S G, Liu G Z, Wang L, et al. Preparation and properties of hydrocarbon dispersible HZSM-5 nanocrystals for quasi-homogeneous catalytic cracking of n-dodecane[J]. Microporous and Mesoporous Materials, 2011, 143(2/3): 458-466. |
68 | Iwase Y, Sakamoto Y, Shiga A, et al. Shape-selective catalysis determined by the volume of a zeolite cavity and the reaction mechanism for propylene production by the conversion of butene using a proton-exchanged zeolite[J]. The Journal of Physical Chemistry C, 2012, 116(8): 5182-5196. |
69 | Tian Y J, Zhang B F, Liang H R, et al. Synthesis and performance of pillared HZSM-5 nanosheet zeolites for n-decane catalytic cracking to produce light olefins[J]. Applied Catalysis A: General, 2019, 572: 24-33. |
70 | Castro-Marcano F, van Duin A C T. Comparison of thermal and catalytic cracking of 1-heptene from ReaxFF reactive molecular dynamics simulations[J]. Combustion and Flame, 2013, 160(4): 766-775. |
71 | Corma A, González-Alfaro V, Orchillés A V. Decalin and tetralin as probe molecules for cracking and hydrotreating the light cycle oil[J]. Journal of Catalysis, 2001, 200(1): 34-44. |
72 | Kubička D, Kumar N, Mäki-Arvela P, et al. Ring opening of decalin over zeolites(Ⅰ): Activity and selectivity of proton-form zeolites[J]. Journal of Catalysis, 2004, 222(1): 65-79. |
73 | Kubička D, Kumar N, Mäki-Arvela P, et al. Ring opening of decalin over zeolitesII. Activity and selectivity of platinum-modified zeolites[J]. Journal of Catalysis, 2004, 227(2): 313-327. |
74 | Bao S G, Liu G Z, Zhang X W, et al. New method of catalytic cracking of hydrocarbon fuels using a highly dispersed nano-HZSM-5 catalyst[J]. Industrial & Engineering Chemistry Research, 2010, 49(8): 3972-3975. |
75 | 韩之雄. 正癸烷微纳米催化裂解流动传热实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
Han Z X. Experimental investigation on flow and heat transfer of n-decane micro/nanocatalytic pyrolysis[D]. Harbin: Harbin Institute of Technology, 2016. | |
76 | Bao S G, Liu G Z, Wang L, et al. Quasi-homogeneous catalytic activities of hydrocarbon dispersible HZSM-5 nanocrystals grafted with different alkyl groups[J]. Applied Catalysis A: General, 2011, 405(1/2): 61-68. |
77 | 孙文娟. 可控自组装制备多级孔Beta纳米分子筛及其催化性能研究[D]. 天津: 天津大学, 2015. |
Sun W J. Synthesis and catalytic performance of hierarchical beta nanozeolites through controllable self-assembly[D]. Tianjin: Tianjin University, 2015. | |
78 | Sun W J, Liu G Z, Wang L, et al. Quasi-homogeneous catalytic cracking of JP-10 over high hydrocarbon dispersible nanozeolites[J]. Fuel, 2015, 144: 96-102. |
79 | Seo Y, Cho K, Jung Y, et al. Characterization of the surface acidity of MFI zeolite nanosheets by 31P NMR of adsorbed phosphine oxides and catalytic cracking of decalin[J]. ACS Catalysis, 2013, 3(4): 713-720. |
80 | Tian Y J, Qiu Y, Hou X, et al. Catalytic cracking of JP-10 over HZSM-5 nanosheets[J]. Energy & Fuels, 2017, 31(11): 11987-11994. |
81 | Xing Y, Li D, Xie W J, et al. Catalytic cracking of tricyclo[5.2.1.02.6]decane over HZSM-5 molecular sieves[J]. Fuel, 2010, 89(7): 1422-1428. |
82 | Kissin Y V. Chemical mechanisms of catalytic cracking over solid acidic catalysts: alkanes and alkenes[J]. Catalysis Reviews, 2001, 43(1/2): 85-146. |
83 | 阚仁俊, 达志坚, 张久顺, 等. 十氢萘催化裂解制低碳烯烃研究进展[J]. 石油炼制与化工, 2022, 53(7): 112-121. |
Kan R J, Da Z J, Zhang J S, et al. Research progress in deep catalytic cracking of decalin to low-carbon olefins[J]. Petroleum Processing and Petrochemicals, 2022, 53(7): 112-121. | |
84 | Sang Y, Jiao Q Z, Li H S, et al. HZSM-5/MCM-41 composite molecular sieves for the catalytic cracking of endothermic hydrocarbon fuels: nano-ZSM-5 zeolites as the source[J]. Journal of Nanoparticle Research, 2014, 16(12): 2755. |
85 | 桑宇. HZSM-5分子筛结构调控及其催化性能研究[D]. 北京: 北京理工大学, 2015. |
Sang Y. Structure controlling and catalytic performance of HZSM-5 zeolites[D]. Beijing: Beijing Institute of Technology, 2015. | |
86 | Li Y G, Xie W H, Yong S. The acidity and catalytic behavior of Mg-ZSM-5 prepared via a solid-state reaction[J]. Applied Catalysis A: General, 1997, 150(2): 231-242. |
87 | Long L, Lan Z Z, Han Z X, et al. Co3O4 nanosheet wrapped commercial HZSM-5 for promoting catalytic cracking of n-decane and anticoking activities[J]. ACS Applied Energy Materials, 2018, 1(8): 4130-4139. |
88 | Sadeghinezhad E, Mehrali M, Saidur R, et al. A comprehensive review on graphene nanofluids: recent research, development and applications[J]. Energy Conversion and Management, 2016, 111: 466-487. |
89 | Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. |
90 | Sim H S, Yetter R A, Hong S, et al. Functionalized graphene sheet as a dispersible fuel additive for catalytic decomposition of methylcyclohexane[J]. Combustion and Flame, 2020, 217: 212-221. |
91 | Wang Z, Lin R S, Guo Y S, et al. Tributylamine as an initiator for cracking of heptane[J]. Energy Conversion and Management, 2008, 49(6): 1584-1594. |
92 | Qi Y, Liu Q Q, Chen Z Y, et al. Nickel-Passivating element selection in FCC process and mechanistic study on the passivation of nickel by lanthanum and phosphorus[J]. Chemical Engineering Journal, 2023, 467: 143452. |
93 | Guo Y S, Yang Y Z, Fang W J, et al. Resorcinarene-encapsulated Ni-B nano-amorphous alloys for quasi-homogeneous catalytic cracking of JP-10[J]. Applied Catalysis A: General, 2014, 469: 213-220. |
94 | Guo Y S, Yang Y Z, Xiao J, et al. A novel well-dispersed nano-Ni catalyst for endothermic reaction of JP-10[J]. Fuel, 2014, 117: 932-938. |
95 | Herbinet O, Sirjean B, Bounaceur R, et al. Primary mechanism of the thermal decomposition of tricyclodecane[J]. The Journal of Physical Chemistry. A, 2006, 110(39): 11298-11314. |
96 | Wang L L, Chen T, Zhang J, et al. High catalytic activity and stability quasi homogeneous alkali metal promoted Ni/SiO2 aerogel catalysts for catalytic cracking of n-decane[J]. Fuel, 2020, 268: 117384. |
97 | Wang L L, Liu L, Gong X L, et al. Combined strategy and Ni NPs/SiO2 aerogel catalyst for cracking hydrocarbon fuels[J]. Journal of Power Sources, 2021, 506: 230172. |
98 | Shen Z B, Ke M, Yu P, et al. Catalytic activities of Mo-modified Ni/Al2O3 catalysts for thioetherification of mercaptans and di-olefins in fluid catalytic cracking naphtha[J]. Transition Metal Chemistry, 2012, 37(6): 587-593. |
99 | Long L, Zhou W X, Qiu Y F, et al. Coking and gas products behavior of supercritical n-decane over NiO nanoparticle/nanosheets modified HZSM-5[J]. Energy, 2020, 192: 116540. |
[1] | Jin ZHANG, Zhibin GUO, Laiming LUO, Shanfu LU, Yan XIANG. Design and performance of 5 kW reforming methanol high temperature proton exchange membrane fuel cell system [J]. CIESC Journal, 2024, 75(4): 1697-1704. |
[2] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[3] | Binbin FENG, Mingjia LU, Zhihong HUANG, Yiwen CHANG, Zhiming CUI. Application and optimization of carbon supports in proton exchange membrane fuel cells [J]. CIESC Journal, 2024, 75(4): 1469-1484. |
[4] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[5] | Lingxian ZHANG, Bin LIU, Lin DENG, Yuhang REN. PEMFC fault diagnosis based on improved TSO optimized Xception [J]. CIESC Journal, 2024, 75(3): 945-955. |
[6] | Hong CHEN, Kun JIANG, Tingjiang TANG, Yiyuan HUANG, Bin CHI, Shijun LIAO. Research on membrane electrode assembly consistency of high-power proton exchange membrane fuel cell stack [J]. CIESC Journal, 2024, 75(2): 637-646. |
[7] | Yang YU, Yiqing LUO, Ronghui WEI, Wenhui ZHANG, Xigang YUAN. A resilient supply chain design method considering node disruption risk [J]. CIESC Journal, 2024, 75(1): 338-353. |
[8] | Wenqi ZHAO, Yanjun DENG, Chunying ZHU, Taotao FU, Youguang MA. Research progress on nanoparticle stabilizing Pickering emulsion and droplet coalescence dynamics [J]. CIESC Journal, 2024, 75(1): 33-46. |
[9] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[10] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[11] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[12] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[13] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[14] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[15] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||