1 |
Ma G, Garbers-Craig A M. Cr(Ⅵ) containing electric furnace dusts and filter cake from a stainless steel waste treatment plant(part 2): Formation mechanisms and leachability[J]. Ironmaking & Steelmaking, 2006, 33(3): 238-244.
|
2 |
Mao L Q, Su P, Huang B, et al. Detoxification of solid waste containing Cr(Ⅵ) with phosphate by thermal treatment[J]. Chemical Engineering Journal, 2017, 314: 114-122.
|
3 |
Aarabi-Karasgani M, Rashchi F, Mostoufi N, et al. Leaching of vanadium from LD converter slag using sulfuric acid[J]. Hydrometallurgy, 2010, 102(1/2/3/4): 14-21.
|
4 |
Gu P, Diao J, Tan W F, et al. Investigation of the carbothermic reduction of chromium-containing vanadium extraction residue[C]//8th International Symposium on High-Temperature Metallurgical Processing. Cham: Springer, 2017: 747-755.
|
5 |
Bakhshi N, Sarrafi A, Ramezanianpour A A. Immobilization of hexavalent chromium in cement mortar: leaching properties and microstructures[J]. Environmental Science and Pollution Research, 2019, 26(20): 20829-20838.
|
6 |
Wang X, Zhang J D, Wang L L, et al. Long-term stability of FeSO4 and H2SO4 treated chromite ore processing residue (COPR): importance of H+ and S O 4 2 - [J]. Journal of Hazardous Materials, 2017, 321: 720-727.
|
7 |
Yu Y H, An L L, Bae J H, et al. A novel biosorbent from hardwood cellulose nanofibrils grafted with poly(m-aminobenzene sulfonate) for adsorption of Cr(Ⅵ)[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 682070.
|
8 |
Tang X, Huang Y, Li Y, et al. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111699.
|
9 |
Barakat M A. New trends in removing heavy metals from industrial wastewater[J]. Arabian Journal of Chemistry, 2011, 4(4): 361-377.
|
10 |
Wang G, Diao J, Liu L, et al. Highly efficient utilization of hazardous vanadium extraction tailings containing high chromium concentrations by carbothermic reduction[J]. Journal of Cleaner Production, 2019, 237: 117832.
|
11 |
Yoshikawa N, Mashiko K I, Sasaki Y, et al. Microwave carbo-thermal reduction for recycling of Cr from Cr-containing steel making wastes[J]. ISIJ International, 2008, 48(5): 690-695.
|
12 |
Dai L, Lu Y, Wang X Y, et al. Production of nano-sized chromium carbide powders from Cr2O3/C precursors by direct electrochemical reduction in molten calcium chloride[J]. International Journal of Refractory Metals and Hard Materials, 2015, 51: 153-159.
|
13 |
Zhao Z W, Zheng H J, Liu S J, et al. Low temperature synthesis of chromium carbide (Cr3C2) nanopowders by a novel precursor method[J]. International Journal of Refractory Metals and Hard Materials, 2015, 48: 46-50.
|
14 |
Mahajan M, Rajpoot S, Pandey O P. In-situ synthesis of chromium carbide (Cr3C2) nanopowders by chemical-reduction route[J]. International Journal of Refractory Metals and Hard Materials, 2015, 50: 113-119.
|
15 |
Jin K, Jia Y B, Zhao Z W, et al. Synthesis of chromium carbide nanopowders by microwave heating and their composition and microstructure change under gamma ray irradiation[J]. Molecules, 2018, 24(1): 16.
|
16 |
Orlova N, Abakumov E, Orlova E, et al. Soil organic matter alteration under biochar amendment: study in the incubation experiment on the Podzol soils of the Leningrad Region (Russia)[J]. Journal of Soils and Sediments, 2019, 19(6): 2708-2716.
|
17 |
Park J H, Choppala G K, Bolan N S, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and Soil, 2011, 348(1): 439-451.
|
18 |
Morita K, Tsukiashi K, Kimura M, et al. Activity of chromium oxide in CaO-SiO2 based slags at 1873 K[J]. Steel Research International, 2005, 76(4): 279-283.
|
19 |
Yan B J, Li F, Wang H, et al. Study of chromium oxide activities in EAF slags[J]. Metallurgical and Materials Transactions B, 2016, 47(1): 37-46.
|
20 |
Rankin W J, Biswas A K. The behaviour of chromium in reduced slag-metal systems[J]. Archiv Für Das Eisenhüttenwesen, 1979, 50(1): 7-11.
|
21 |
Soltani Panah H. Gibbs free energy change using Ru/Al2O3 catalyst—an application in supercritical water gasification process[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27444-27458.
|
22 |
Mori T, Yang J, Kuwabara M. Mechanism of carbothermic reduction of chromium oxide[J]. ISIJ International, 2007, 47(10): 1387-1393.
|
23 |
Berger L M, Stolle S, Gruner W, et al. Investigation of the carbothermal reduction process of chromium oxide by micro- and lab-scale methods[J]. International Journal of Refractory Metals and Hard Materials, 2001, 19(2): 109-121.
|
24 |
Wang X, van Gerven T, Blanpain B, et al. In-situ investigation on the reduction of magnesiochromite with ferrosilicon between 1373— 1573 K[J]. ISIJ International, 2015, 55(11): 2289-2296.
|
25 |
Wang S C, Lin H T, Nayak P K, et al. Carbothermal reduction process for synthesis of nanosized chromium carbide via metal-organic vapor deposition[J]. Thin Solid Films, 2010, 518(24): 7360-7365.
|
26 |
Zhang Y L, Liu Y, Wei W J. Carbothermal reduction process of the Fe-Cr-O system[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(10): 931-940.
|
27 |
Jobby R, Jha P, Yadav A K, et al. Biosorption and biotransformation of hexavalent chromium [ C r ( Ⅵ ) ] : a comprehensive review[J]. Chemosphere, 2018, 207: 255-266.
|
28 |
Xie J L, Wei K, Liu X Q, et al. Effect of carbon type on the detoxification mechanism of hexavalent chromium [ C r ( Ⅵ ) ] by carbothermal reduction[J]. Journal of Environmental Chemical Engineering, 2022, 10(4): 108091.
|
29 |
Xia X, Dahn J R. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes[J]. Electrochemical and Solid-State Letters, 2012, 15(1): A1.
|
30 |
Hu H Y, Shi M Y, Yang Y H, et al. Further insight into the formation and oxidation of CaCr2O4 during solid fuel combustion[J]. Environmental Science & Technology, 2018, 52(4): 2385-2391.
|