CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3518-3527.DOI: 10.11949/0438-1157.20240078
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Juhui CHEN(), Ran AN, Dan LI, Haoming GAO, Kun ZHANG
Received:
2024-01-16
Revised:
2024-06-01
Online:
2024-11-04
Published:
2024-10-25
Contact:
Juhui CHEN
通讯作者:
陈巨辉
作者简介:
陈巨辉(1982—),女,博士,教授,chenjuhui@hrbust.edu.cn
基金资助:
CLC Number:
Juhui CHEN, Ran AN, Dan LI, Haoming GAO, Kun ZHANG. Effect of van der Waals forces on the motion of magnetic field fluidized nanoparticles[J]. CIESC Journal, 2024, 75(10): 3518-3527.
陈巨辉, 安然, 李丹, 高浩铭, 张坤. 范德华力对磁场流化纳米颗粒运动的影响[J]. 化工学报, 2024, 75(10): 3518-3527.
最小网格尺寸 | 网格数量/个 | 总动能/(10-10 J) |
---|---|---|
1R | 6229 | 0.0642 |
2R | 4163 | 0.0471 |
3R | 2248 | 0.0243 |
4R | 1920 | 0.0238 |
5R | 863 | 0.0386 |
6R | 664 | 0.0497 |
Table 1 Grid independence test
最小网格尺寸 | 网格数量/个 | 总动能/(10-10 J) |
---|---|---|
1R | 6229 | 0.0642 |
2R | 4163 | 0.0471 |
3R | 2248 | 0.0243 |
4R | 1920 | 0.0238 |
5R | 863 | 0.0386 |
6R | 664 | 0.0497 |
参数 | 实验值 | 模拟值 |
---|---|---|
颗粒直径/ m | 1.7×10-8 | 1.7×10-8 |
颗粒密度/(kg/m3) | 850 | 850 |
气相密度/(kg/m3) | 1.29 | 1.29 |
注入颗粒数量 | — | 800 |
纳米颗粒磁导率/(H/m) | 8.3 | 8.3 |
杨氏模量/ GPa | 68.95 | 68.95 |
泊松比 | 0.33 | 0.33 |
颗粒-颗粒摩擦因数 | 0.3 | 0.3 |
颗粒弹性刚度/(N/m) | 800 | 800 |
颗粒-壁面摩擦因数 | 0.3 | 0.3 |
墙壁弹性刚度/(N/m) | 800 | 800 |
阻尼系数 | 0.05 | 0.05 |
Table 2 Analog parameter
参数 | 实验值 | 模拟值 |
---|---|---|
颗粒直径/ m | 1.7×10-8 | 1.7×10-8 |
颗粒密度/(kg/m3) | 850 | 850 |
气相密度/(kg/m3) | 1.29 | 1.29 |
注入颗粒数量 | — | 800 |
纳米颗粒磁导率/(H/m) | 8.3 | 8.3 |
杨氏模量/ GPa | 68.95 | 68.95 |
泊松比 | 0.33 | 0.33 |
颗粒-颗粒摩擦因数 | 0.3 | 0.3 |
颗粒弹性刚度/(N/m) | 800 | 800 |
颗粒-壁面摩擦因数 | 0.3 | 0.3 |
墙壁弹性刚度/(N/m) | 800 | 800 |
阻尼系数 | 0.05 | 0.05 |
β/(°) | 工况 | ||
---|---|---|---|
0.01 T | 0.0125 T | 0.02 T | |
0 | C1 | C5 | C9 |
30 | C2 | C6 | C10 |
60 | C3 | C7 | C11 |
90 | C4 | C8 | C12 |
Table 3 Simulated working condition
β/(°) | 工况 | ||
---|---|---|---|
0.01 T | 0.0125 T | 0.02 T | |
0 | C1 | C5 | C9 |
30 | C2 | C6 | C10 |
60 | C3 | C7 | C11 |
90 | C4 | C8 | C12 |
1 | Fan G D, Song Y Q, Xia M Q, et al. Photocatalytic inactivation of algae in a fluidized bed photoreactor with an external magnetic field[J]. Journal of Environmental Management, 2022, 307: 114552. |
2 | Hao W K, Zhu Q H. Operating range of magnetic stabilization flow regime for magnetized fluidized bed with Geldart-B magnetizable and nonmagnetizable particles[J]. Particuology, 2022, 60: 90-98. |
3 | 林檬, 陈国, 赵珺. 磁辅助生物反应器研究进展[J]. 化工进展, 2014, 33(5): 1252-1258, 1320. |
Lin M, Chen G, Zhao J. Research progress of magnetically assisted bioreactor[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1252-1258, 1320. | |
4 | Bahramian A, Olazar M. Evaluation of elastic and inelastic contact forces in the flow regimes of titania nanoparticle agglomerates in a bench-scale conical fluidized bed: a comparative study of CFD-DEM simulation and experimental data[J]. Chemical Engineering Research and Design, 2021, 176: 34-48. |
5 | Hoorijani H, Zarghami R, Nosrati K, et al. Investigating the hydrodynamics of vibro-fluidized bed of hydrophilic titanium nanoparticles[J]. Chemical Engineering Research and Design, 2021, 174: 486-497. |
6 | Pan F, Du Z, Li S F, et al. Preparation of nano-sized tungsten carbide via fluidized bed[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 923-932. |
7 | Liu H P, Wang S W. Fluidization behaviors of nanoparticle agglomerates with high initial bed heights[J]. Powder Technology, 2021, 388: 122-128. |
8 | Chaouki J, Chavarie C, Klvana D, et al. Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels[J]. Powder Technology, 1985, 43(2): 117-125. |
9 | Liu D Y, van Wachem B G M, Mudde R F, et al. Characterization of fluidized nanoparticle agglomerates by using adhesive CFD-DEM simulation[J]. Powder Technology, 2016, 304: 198-207. |
10 | Liu D Y, van Wachem B G M, Mudde R F, et al. An adhesive CFD-DEM model for simulating nanoparticle agglomerate fluidization[J]. AIChE Journal, 2016, 62(7): 2259-2270. |
11 | 王垚, 金涌, 魏飞, 等. 原生纳米级颗粒的聚团散式流态化[J]. 化工学报, 2002, 53(4): 344-348. |
Wang Y, Jin Y, Wei F, et al. Agglomerate particulate fluidization of primary nano-particles[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(4): 344-348. | |
12 | Vimal T, Pandey S, Gupta S K, et al. Manifestation of strong magneto-electric dipolar coupling in ferromagnetic nanoparticles-FLC composite: evaluation of time-dependent memory effect[J]. Liquid Crystals, 2018, 45(5): 687-697. |
13 | Maniotis N, Nazlidis A, Myrovali E, et al. Estimating the effective anisotropy of ferromagnetic nanoparticles through magnetic and calorimetric simulations[J]. Journal of Applied Physics, 2019, 125(10): 103903. |
14 | Ganzha V L, Saxena S C. Hydrodynamic behavior of magnetically stabilized fluidized beds of magnetic particles[J]. Powder Technology, 2000, 107(1/2): 31-35. |
15 | Jovanovic G N, Sornchamni T, Atwater J E, et al. Magnetically assisted liquid-solid fluidization in normal and microgravity conditions: experiment and theory[J]. Powder Technology, 2004, 148(2/3): 80-91. |
16 | Espin M J, Quintanilla M A S, Valverde J M. Magnetic stabilization of fluidized beds: effect of magnetic field orientation[J]. Chemical Engineering Journal, 2017, 313: 1335-1345. |
17 | Zhu Q H, Li H Z, Zhu Q S, et al. Hydrodynamic study on magnetized fluidized beds with Geldart-B magnetizable particles[J]. Powder Technology, 2014, 268: 48-58. |
18 | Ishii T, Yamakawa H, Kanaki T, et al. Large terahertz magnetization response in ferromagnetic nanoparticles[J]. Applied Physics Letters, 2019, 114(6): 062402. |
19 | Prischepa S, Danilyuk A. Anisotropic temperature-dependent interaction of ferromagnetic nanoparticles embedded inside CNT[J]. International Journal of Nanoscience, 2019, 18(3/4): 1940015. |
20 | Abu-Bakr A F, Zubarev A Y. Effect of ferromagnetic nanoparticles aggregation on magnetic hyperthermia[J]. The European Physical Journal Special Topics, 2020, 229(2): 323-329. |
21 | Ku J G, Xia J, Li J Z, et al. Accurate calculation of major forces acting on magnetic particles in a high-gradient magnetic field: a 3D finite element analysis[J]. Powder Technology, 2021, 394: 767-774. |
22 | Vogel F, Pelteret J P, Kaessmair S, et al. Magnetic force and torque on particles subject to a magnetic field[J]. European Journal of Mechanics-A/Solids, 2014, 48: 23-37. |
23 | Pinto-Espinoza J. Dynamic behavior of ferromagnetic particles in a liquid-solid magnetically assisted fluidized bed (MAFB): theory, experiment, and CFD-DPM simulation[D]. Corvallis: Oregon State University, 2002. |
24 | Hao Z H, Li X, Lu H L, et al. Numerical simulation of particle motion in a gradient magnetically assisted fluidized bed[J]. Powder Technology, 2010, 203(3): 555-564. |
25 | 陈巨辉, 安然, 舒崚峰, 等. 修正磁化模型的多组分铁磁性颗粒运动研究[J]. 力学学报, 2024, 56(3): 740-750. |
Chen J H, An R, Shu L F, et al. Study on motion of multi-component ferromagnetic particles with modified magnetization model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 740-750. | |
26 | Rosensweig R E. Magnetic stabilization of the state of uniform fluidization[J]. Industrial & Engineering Chemistry Fundamentals, 1979, 18(3): 260-269. |
27 | Chen J H, An R, Li D, et al. A modified Pinto-Espinoza magnetization model for studying on motion characteristics of ferromagnetic particles[J]. Journal of Magnetism and Magnetic Materials, 2024, 589: 171539. |
28 | Greenwood J A. Adhesion of elastic spheres[J]. Proceedings of the Royal Society of London A, 1997, 453: 1277-1297. |
29 | Krupp H. Particle adhesion theory and experiment[J]. Advances in Colloid and Interface Science, 1967, 1(2): 111-239. |
30 | He Y, Muller F, Hassanpour A, et al. A CPU-GPU cross-platform coupled CFD-DEM approach for complex particle-fluid flows[J]. Chemical Engineering Science, 2020, 223: 115712. |
31 | Zhu Q H, Li H Z, Zhu Q S, et al. Hydrodynamic behavior of magnetized fluidized beds with admixtures of Geldart-B magnetizable and nonmagnetizable particles[J]. Particuology, 2016, 29: 86-94. |
32 | Karimi F, Haghshenasfard M, Sotudeh-Gharebagh R, et al. Multiscale characterization of nanoparticles in a magnetically assisted fluidized bed[J]. Particuology, 2020, 51: 64-71. |
[1] | He ZHU, Yi ZHANG, Nana QI, Kai ZHANG. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework [J]. CIESC Journal, 2024, 75(9): 3103-3112. |
[2] | Zhengliang HUANG, Mingrui FENG, Qi SONG, Congjing REN, Yao YANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Inhibitory effect of premixed feedstock on particle agglomeration in fluidized pyrolysis reaction of waste resin [J]. CIESC Journal, 2024, 75(9): 3094-3102. |
[3] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[4] | Wenyan ZHANG, Hao LIU, Weilong SONG, Pin ZHAO, Xinhua WANG. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes [J]. CIESC Journal, 2024, 75(5): 1920-1928. |
[5] | Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels [J]. CIESC Journal, 2024, 75(4): 1167-1182. |
[6] | Shiyu YAN, Jiaojiao GAO, Taishun YANG, Shangzhi XIE, Yanjuan YANG, Jing XU. Effect of coordination environment of ruthenium-based catalysts on their performance for polyethylene hydrogenolysis [J]. CIESC Journal, 2024, 75(10): 3588-3599. |
[7] | Na XU, Zixuan LI, Zilu LIU, Yaodong LYU, Shiwen ZHANG. Influence of solution environment on the dispersion stability of nanoparticle liquid system [J]. CIESC Journal, 2024, 75(10): 3815-3824. |
[8] | Wenqi ZHAO, Yanjun DENG, Chunying ZHU, Taotao FU, Youguang MA. Research progress on nanoparticle stabilizing Pickering emulsion and droplet coalescence dynamics [J]. CIESC Journal, 2024, 75(1): 33-46. |
[9] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[10] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[11] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[12] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[13] | Wenqi HOU, Yan SUN, Xiaoyan DONG. Basification modification of transthyretin significantly enhances inhibitory effect on amyloid-β protein aggregation [J]. CIESC Journal, 2023, 74(5): 2100-2110. |
[14] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[15] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 106
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 229
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||