CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3588-3599.DOI: 10.11949/0438-1157.20240634
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Shiyu YAN1(), Jiaojiao GAO1, Taishun YANG1, Shangzhi XIE1, Yanjuan YANG1, Jing XU1,2(
)
Received:
2024-06-07
Revised:
2024-07-08
Online:
2024-11-04
Published:
2024-10-25
Contact:
Jing XU
颜诗宇1(), 高姣姣1, 杨太顺1, 谢尚志1, 杨艳娟1, 徐晶1,2(
)
通讯作者:
徐晶
作者简介:
颜诗宇(1998—),女,硕士研究生,1090336837@qq.com
基金资助:
CLC Number:
Shiyu YAN, Jiaojiao GAO, Taishun YANG, Shangzhi XIE, Yanjuan YANG, Jing XU. Effect of coordination environment of ruthenium-based catalysts on their performance for polyethylene hydrogenolysis[J]. CIESC Journal, 2024, 75(10): 3588-3599.
颜诗宇, 高姣姣, 杨太顺, 谢尚志, 杨艳娟, 徐晶. 钌基催化剂配位环境对聚乙烯氢解性能的影响[J]. 化工学报, 2024, 75(10): 3588-3599.
催化剂 | 产率/% | 转化率/% | ||
---|---|---|---|---|
CH4 | C2~C6 | C7~C40 | ||
CeO2 | 0.1 | 0.2 | 1.1 | 1.4 |
Table 1 Performance evaluation of CeO2 support
催化剂 | 产率/% | 转化率/% | ||
---|---|---|---|---|
CH4 | C2~C6 | C7~C40 | ||
CeO2 | 0.1 | 0.2 | 1.1 | 1.4 |
催化剂 | 钌含量① /% | 比表面积②/(m2/g) | 孔容③ /(cm3/g) | 平均孔径④/nm | 钌平均粒径⑤/nm | 钌金属分散度⑥/% |
---|---|---|---|---|---|---|
CeO2 | — | 16.4 | 0.045 | 6.66 | — | — |
0.5% Ru/CeO2 | 0.38 | 17.9 | 0.051 | 7.25 | 0.85 | 100 |
2% Ru/CeO2 | 1.83 | 18.8 | 0.049 | 7.12 | 1.55 | 85 |
9% Ru/CeO2 | 8.58 | 13.0 | 0.028 | 8.41 | 2.75 | 48 |
Table 2 Physicochemical properties of the catalysts
催化剂 | 钌含量① /% | 比表面积②/(m2/g) | 孔容③ /(cm3/g) | 平均孔径④/nm | 钌平均粒径⑤/nm | 钌金属分散度⑥/% |
---|---|---|---|---|---|---|
CeO2 | — | 16.4 | 0.045 | 6.66 | — | — |
0.5% Ru/CeO2 | 0.38 | 17.9 | 0.051 | 7.25 | 0.85 | 100 |
2% Ru/CeO2 | 1.83 | 18.8 | 0.049 | 7.12 | 1.55 | 85 |
9% Ru/CeO2 | 8.58 | 13.0 | 0.028 | 8.41 | 2.75 | 48 |
1 | van Fan Y, Jiang P, Tan R R, et al. Forecasting plastic waste generation and interventions for environmental hazard mitigation[J]. Journal of Hazardous Materials, 2022, 424: 127330. |
2 | Ali W, Ali H, Souissi S, et al. Are bioplastics an ecofriendly alternative to fossil fuel plastics?[J]. Environmental Chemistry Letters, 2023, 21(4): 1991-2002. |
3 | Kunwar B, Cheng H N, Chandrashekaran S R, et al. Plastics to fuel: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 421-428. |
4 | Bunescu A, Lee S, Li Q, et al. Catalytic hydroxylation of polyethylenes[J]. ACS Central Science, 2017, 3(8): 895-903. |
5 | Schwab S T, Baur M, Nelson T F, et al. Synthesis and deconstruction of polyethylene-type materials[J]. Chemical Reviews, 2024, 124(5): 2327-2351. |
6 | Faraca G, Astrup T. Plastic waste from recycling centres: characterisation and evaluation of plastic recyclability[J]. Waste Management, 2019, 95: 388-398. |
7 | Zhang F, Zeng M H, Yappert R D, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization[J]. Science, 2020, 370(6515): 437-441. |
8 | Celik G, Kennedy R M, Hackler R A, et al. Upcycling single-use polyethylene into high-quality liquid products[J]. ACS Central Science, 2019, 5(11): 1795-1803. |
9 | Yuan X Z, Cho M K, Lee J G, et al. Upcycling of waste polyethylene terephthalate plastic bottles into porous carbon for CF4 adsorption[J]. Environmental Pollution, 2020, 265: 114868. |
10 | Lee W T, van Muyden A, Bobbink F D, et al. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts[J]. Nature Communications, 2022, 13(1): 4850. |
11 | Rorrer J E, Troyano-Valls C, Beckham G T, et al. Hydrogenolysis of polypropylene and mixed polyolefin plastic waste over Ru/C to produce liquid alkanes[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(35): 11661-11666. |
12 | Rorrer J E, Beckham G T, Román-Leshkov Y. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions[J]. JACS Au, 2020, 1(1): 8-12. |
13 | Fihri A, Bouhrara M, Patil U, et al. Fibrous nano-silica supported ruthenium (KCC-1/Ru): a sustainable catalyst for the hydrogenolysis of alkanes with good catalytic activity and lifetime[J]. ACS Catalysis, 2012, 2(7): 1425-1431. |
14 | Lee W T, Bobbink F D, van Muyden A P, et al. Catalytic hydrocracking of synthetic polymers into grid-compatible gas streams[J]. Cell Reports Physical Science, 2021, 2(2): 100332. |
15 | Chen L X, Zhu Y F, Meyer L C, et al. Effect of reaction conditions on the hydrogenolysis of polypropylene and polyethylene into gas and liquid alkanes[J]. Reaction Chemistry & Engineering, 2022, 7(4): 844-854. |
16 | Nakaji Y, Tamura M, Miyaoka S, et al. Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes[J]. Applied Catalysis B: Environmental, 2021, 285: 119805. |
17 | Wang C, Xie T J, Kots P A, et al. Polyethylene hydrogenolysis at mild conditions over ruthenium on tungstated zirconia[J]. JACS Au, 2021, 1(9): 1422-1434. |
18 | Kim T, Nguyen-Phu H, Kwon T, et al. Investigating the impact of TiO2 crystalline phases on catalytic properties of Ru/TiO2 for hydrogenolysis of polyethylene plastic waste[J]. Environmental Pollution, 2023, 331: 121876. |
19 | Jaydev S D, Martín A J, Pérez-Ramírez J. Direct conversion of polypropylene into liquid hydrocarbons on carbon-supported platinum catalysts[J]. ChemSusChem, 2021, 14(23): 5179-5185. |
20 | Pinzón M, Romero A, de Lucas Consuegra A, et al. Hydrogen production by ammonia decomposition over ruthenium supported on SiC catalyst[J]. Journal of Industrial and Engineering Chemistry, 2021, 94: 326-335. |
21 | Sakpal T, Lefferts L. Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation[J]. Journal of Catalysis, 2018, 367: 171-180. |
22 | Guo Y, Mei S, Yuan K, et al. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal–support interactions and H-spillover effect[J]. ACS Catalysis, 2018, 8(7): 6203-6215. |
23 | Mi R L, Li D, Hu Z, et al. Morphology effects of CeO2 nanomaterials on the catalytic combustion of toluene: a combined kinetics and diffuse reflectance infrared Fourier transform spectroscopy study[J]. ACS Catalysis, 2021, 11(13): 7876-7889. |
24 | Wang C F, Sun H M, Liu X Q, et al. Low-temperature CO2 methanation over Ru/CeO2: investigation into Ru loadings[J]. Fuel, 2023, 345: 128238. |
25 | Bezkrovnyi O, Vorokhta M, Pawlyta M, et al. In situ observation of highly oxidized Ru species in Ru/CeO2 catalyst under propane oxidation[J]. Journal of Materials Chemistry A, 2022, 10(31): 16675-16684. |
26 | Liao W Q, Yue M N, Chen J Y, et al. Decoupling the interfacial catalysis of CeO2-supported Rh catalysts tuned by CeO2 morphology and Rh particle size in CO2 hydrogenation[J]. ACS Catalysis, 2023, 13(8): 5767-5779. |
27 | Wang J, Wei Z Z, Mao S J, et al. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction[J]. Energy & Environmental Science, 2018, 11(4): 800-806. |
28 | Zhang Q, Kusada K, Wu D S, et al. Selective control of FCC and hcp crystal structures in Au-Ru solid-solution alloy nanoparticles[J]. Nature Communications, 2018, 9(1): 510. |
29 | Ye M X, Li Y R, Yang Z R, et al. Ruthenium/TiO2-catalyzed hydrogenolysis of polyethylene terephthalate: reaction pathways dominated by coordination environment[J]. Angewandte Chemie International Edition, 2023, 62(19): e202301024. |
30 | Mahmood J, Li F, Jung S M, et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction[J]. Nature Nanotechnology, 2017, 12(5): 441-446. |
31 | Van Hardeveld R, Hartog F. The statistics of surface atoms and surface sites on metal crystals[J]. Surface Science, 1969, 15(2): 189-230. |
32 | Kim T W, Kim D, Jo Y, et al. Potassium as the best alkali metal promoter in boosting the hydrogenation activity of Ru/MgO for aromatic LOHC molecules by facilitated heterolytic H2 adsorption[J]. Journal of Catalysis, 2023, 419: 112-124. |
33 | Kim T W, Chun H J, Jo Y, et al. Electronic vs. geometric effects of Al2O3-supported Ru species on the adsorption of H2 and substrate for aromatic LOHC hydrogenation[J]. Journal of Catalysis, 2023, 428: 115178. |
34 | Matsubu J C, Yang V N, Christopher P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity[J]. Journal of the American Chemical Society, 2015, 137(8): 3076-3084. |
35 | Lyu S S, Cheng Q P, Liu Y H, et al. Dopamine sacrificial coating strategy driving formation of highly active surface-exposed Ru sites on Ru/TiO2 catalysts in Fischer-Tropsch synthesis[J]. Applied Catalysis B: Environmental, 2020, 278: 119261. |
36 | Kellner C S, Bell A T. Effects of dispersion on the activity and selectivity of alumina-supported ruthenium catalysts for carbon monoxide hydrogenation[J]. Journal of Catalysis, 1982, 75(2): 251-261. |
37 | Abdel-Mageed A M, Widmann D, Olesen S E, et al. Selective CO methanation on Ru/TiO2 catalysts: role and influence of metal-support interactions[J]. ACS Catalysis, 2015, 5(11): 6753-6763. |
38 | Chen S L, Abdel-Mageed A M, Li D, et al. Morphology-engineered highly active and stable Ru/TiO2 catalysts for selective CO methanation[J]. Angewandte Chemie International Edition, 2019, 58(31): 10732-10736. |
39 | Yu H L, Wei Y, Lin T J, et al. Identifying the performance descriptor in direct syngas conversion to long-chain α-olefins over ruthenium-based catalysts promoted by alkali metals[J]. ACS Catalysis, 2023, 13(6): 3949-3959. |
40 | Kale M J, Christopher P. Utilizing quantitative in situ FTIR spectroscopy to identify well-coordinated Pt atoms as the active site for CO oxidation on Al2O3-supported Pt catalysts[J]. ACS Catalysis, 2016, 6(8): 5599-5609. |
41 | Jia C H, Xie S Q, Zhang W L, et al. Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst[J]. Chem Catalysis, 2021, 1(2): 437-455. |
42 | Flaherty D W, Iglesia E. Transition-state enthalpy and entropy effects on reactivity and selectivity in hydrogenolysis of n-alkanes[J]. Journal of the American Chemical Society, 2013, 135(49): 18586-18599. |
43 | Flaherty D W, Hibbitts D D, Iglesia E. Metal-catalyzed C—C bond cleavage in alkanes: effects of methyl substitution on transition-state structures and stability[J]. Journal of the American Chemical Society, 2014, 136(27): 9664-9676. |
44 | Xie T J, Wittreich G R, Vlachos D G. Multiscale modeling of hydrogenolysis of ethane and propane on Ru(0001): implications for plastics recycling[J]. Applied Catalysis B: Environmental, 2022, 316: 121597. |
45 | Nakagawa Y, Oya S I, Kanno D, et al. Regioselectivity and reaction mechanism of Ru-catalyzed hydrogenolysis of squalane and model alkanes[J]. ChemSusChem, 2017, 10(1): 189-198. |
[1] | Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction [J]. CIESC Journal, 2024, 75(9): 3320-3328. |
[2] | Mengting ZHANG, Shulin WANG, Xi SANG, Xinghao YUAN, Gang XU. Artificial Cu-TM1459 metalloenzyme catalyzes asymmetric Michael addition reaction [J]. CIESC Journal, 2024, 75(9): 3255-3265. |
[3] | Shuzhen WANG, Yuting WANG, Mengxi MA, Wei ZHANG, Jiangnan XIANG, Haiying LU, Yan WANG, Binbin FAN, Jiajun ZHENG, Weijiong DAI, Ruifeng LI. Synthesis of ZSM-22 molecular sieve by two-step crystallization and its hydroisomerization performance [J]. CIESC Journal, 2024, 75(9): 3176-3187. |
[4] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
[5] | Jingyu WANG, Jia LIU, Jixiang XU, Lei WANG. Synthesis of lamellar PtZn@Silicalite-1 zeolite and its catalytic properties for propane dehydrogenation [J]. CIESC Journal, 2024, 75(9): 3188-3197. |
[6] | Dezheng HU, Rong WANG, Shidong WANG, Wenfei YANG, Hongwei ZHANG, Pei YUAN. Construction of amorphous NiP@γ-Al2O3 catalyst rich in Ni δ+ for petroleum resin hydrogenation with enhanced hydrogenation and desulfurization activity [J]. CIESC Journal, 2024, 75(9): 3152-3162. |
[7] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
[8] | Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether [J]. CIESC Journal, 2024, 75(7): 2522-2532. |
[9] | Xusheng LIU, Zeyang LI, Yusen YANG, Min WEI. Research progress on electrocatalytic carbon dioxide reduction to gaseous products [J]. CIESC Journal, 2024, 75(7): 2385-2408. |
[10] | Peiqi LI, Xuejiao CHEN, Boxiang WU, Rongpei JIANG, Chao YANG, Zhaohui LIU. Experimental study on radiometric density measurements of petroleum-based and coal-based rocket kerosene at high-parameters [J]. CIESC Journal, 2024, 75(7): 2422-2432. |
[11] | Yin WANG, Pengfei CHU, Hu LIU, Jing LYU, Shouying HUANG, Shengping WANG, Xinbin MA. Influence of aluminum sol with different pH on performance of shaped mordenite catalyst for dimethyl ether carbonylation [J]. CIESC Journal, 2024, 75(7): 2533-2543. |
[12] | Lu YANG, Congcong LIU, Tongtong MENG, Boyuan ZHANG, Tengfei YANG, Wen’an DENG, Xiaobin WANG. Hydrogenation and coke-suppression performance of dispersed catalyst in coal/heavy oil co-processing reactions [J]. CIESC Journal, 2024, 75(7): 2556-2564. |
[13] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
[14] | Yu DING, Changze YANG, Jun LI, Huidong SUN, Hui SHANG. Research progress and prospects of atomic-scale molybdenum-based hydrodesulfurization catalysts [J]. CIESC Journal, 2024, 75(5): 1735-1749. |
[15] | Tingting ZHAO, Lixiang YAN, Fuli TANG, Minzhi XIAO, Ye TAN, Liubin SONG, Zhongliang XIAO, Lingjun LI. Research progress on design strategies and reaction mechanisms of photo-assisted Li-CO2 battery catalysts [J]. CIESC Journal, 2024, 75(5): 1750-1764. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||