CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 312-321.DOI: 10.11949/0438-1157.20230677
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jialin ZHANG(), Dawei XU, Yue GAO, Xingang LI()
Received:
2023-07-03
Revised:
2023-09-26
Online:
2024-03-11
Published:
2024-01-25
Contact:
Xingang LI
通讯作者:
李新刚
作者简介:
张家琳(1999—),女,硕士研究生,zjl_3010@tju.edu.cn
基金资助:
CLC Number:
Jialin ZHANG, Dawei XU, Yue GAO, Xingang LI. Performance of soot combustion over CeO2 modified CuO catalysts supported on nickel foams[J]. CIESC Journal, 2024, 75(1): 312-321.
张家琳, 徐大为, 高越, 李新刚. 泡沫镍负载CeO2改性CuO催化剂的碳烟燃烧性能研究[J]. 化工学报, 2024, 75(1): 312-321.
Add to citation manager EndNote|Ris|BibTeX
催化剂 | T10/℃ | T50/℃ | T90/℃ | S | ||||
---|---|---|---|---|---|---|---|---|
O2 | NO+O2 | O2 | NO+O2 | O2 | NO+O2 | O2 | NO+O2 | |
blank | 471 | 466 | 545 | 541 | 588 | 583 | 51 | 56 |
NF | 460 | 418 | 527 | 464 | 494 | 573 | 约100 | 约100 |
CuO/NF | 423 | 380 | 482 | 416 | 447 | 519 | 约100 | 约100 |
3.5CeO2-CuO/NF | 389 | 361 | 453 | 404 | 433 | 485 | 约100 | 约100 |
6.3CeO2-CuO/NF | 370 | 343 | 429 | 387 | 418 | 470 | 约100 | 约100 |
6.5CeO2-CuO/NF | 362 | 335 | 423 | 383 | 416 | 469 | 约100 | 约100 |
Table 1 T10, T50, T90 and CO2 selectivity of the as-prepared catalysts during soot combustion in 10% (vol) O2/N2 and 600 μl·L-1 NO/10% (vol) O2/N2
催化剂 | T10/℃ | T50/℃ | T90/℃ | S | ||||
---|---|---|---|---|---|---|---|---|
O2 | NO+O2 | O2 | NO+O2 | O2 | NO+O2 | O2 | NO+O2 | |
blank | 471 | 466 | 545 | 541 | 588 | 583 | 51 | 56 |
NF | 460 | 418 | 527 | 464 | 494 | 573 | 约100 | 约100 |
CuO/NF | 423 | 380 | 482 | 416 | 447 | 519 | 约100 | 约100 |
3.5CeO2-CuO/NF | 389 | 361 | 453 | 404 | 433 | 485 | 约100 | 约100 |
6.3CeO2-CuO/NF | 370 | 343 | 429 | 387 | 418 | 470 | 约100 | 约100 |
6.5CeO2-CuO/NF | 362 | 335 | 423 | 383 | 416 | 469 | 约100 | 约100 |
催化剂 | Oads/(Olat+Oads)① | Cu2+/(Cu2++Cu+)① | Ce3+/(Ce3++Ce4+)① | Ce/Cu① | Ce/Cu② |
---|---|---|---|---|---|
CuO/NF | 0.32 | >99.5% | — | — | — |
3.5CeO2-CuO/NF | 0.39 | 0.93 | 0.34 | 5.3 | 3.5 |
6.3CeO2-CuO/NF | 0.42 | 0.85 | 0.42 | 10.1 | 5.9 |
6.5CeO2-CuO/NF | 0.43 | 0.84 | 0.43 | 10.2 | 6.2 |
Table 2 Surface chemical state and content of the O, Cu and Ce elements determined by XPS and ICP
催化剂 | Oads/(Olat+Oads)① | Cu2+/(Cu2++Cu+)① | Ce3+/(Ce3++Ce4+)① | Ce/Cu① | Ce/Cu② |
---|---|---|---|---|---|
CuO/NF | 0.32 | >99.5% | — | — | — |
3.5CeO2-CuO/NF | 0.39 | 0.93 | 0.34 | 5.3 | 3.5 |
6.3CeO2-CuO/NF | 0.42 | 0.85 | 0.42 | 10.1 | 5.9 |
6.5CeO2-CuO/NF | 0.43 | 0.84 | 0.43 | 10.2 | 6.2 |
催化剂 | r/ (10-7 mol·s-1·g-1) | N/ (10-4 mol·g-1) | TOF/ (10-3 s-1) |
---|---|---|---|
CuO/NF | 5.2 | 3.6 | 1.4 |
3.5CeO2-CuO/NF | 6.0 | 3.8 | 1.7 |
6.3CeO2-CuO/NF | 8.6 | 4.9 | 1.8 |
6.5CeO2-CuO/NF | 8.8 | 5.0 | 1.8 |
Table 3 Reaction rate (r), active oxygen amount(N), and TOF of the catalysts
催化剂 | r/ (10-7 mol·s-1·g-1) | N/ (10-4 mol·g-1) | TOF/ (10-3 s-1) |
---|---|---|---|
CuO/NF | 5.2 | 3.6 | 1.4 |
3.5CeO2-CuO/NF | 6.0 | 3.8 | 1.7 |
6.3CeO2-CuO/NF | 8.6 | 4.9 | 1.8 |
6.5CeO2-CuO/NF | 8.8 | 5.0 | 1.8 |
1 | Lin X T, Li S J, He H, et al. Evolution of oxygen vacancies in MnO x -CeO2 mixed oxides for soot oxidation[J]. Applied Catalysis B: Environmental, 2018, 223: 91-102. |
2 | Soltani S, Andersson R, Andersson B. The effect of exhaust gas composition on the kinetics of soot oxidation and diesel particulate filter regeneration[J]. Fuel, 2018, 220: 453-463. |
3 | Wang M, Zhang Y, Yu Y B, et al. Cesium as a dual function promoter in Co/Ce-Sn catalyst for soot oxidation[J]. Applied Catalysis B: Environmental, 2021, 285: 119850. |
4 | 邓湘玲, 叶松寿, 曹志凯, 等. Ag/Ce0.75Zr0.25O2催化剂中Ag的负载量对碳烟燃烧活性的影响[J]. 化工学报, 2017, 68(8): 3064-3070. |
Deng X L, Ye S S, Cao Z K, et al. Effect of Ag loading on soot oxidation for Ag/ Ce0.75Zr0.25O2 catalysts[J]. CIESC Journal, 2017, 68(8): 3064-3070. | |
5 | Andana T, Piumetti M, Bensaid S, et al. CuO nanoparticles supported by ceria for NO x -assisted soot oxidation: insight into catalytic activity and sintering[J]. Applied Catalysis B: Environmental, 2017, 216: 41-58. |
6 | 刘晓刚, 魏波, 史芸菲, 等. La1- x Li x MnO3钙钛矿催化剂同时消除NO和碳烟催化性能[J]. 化工学报, 2020, 71(3): 1053-1059. |
Liu X G, Wei B, Shi Y F, et al. Simultaneous removal of NO and soot over La1- x Li x MnO3 perovskite catalysts[J]. CIESC Journal, 2020, 71(3): 1053-1059. | |
7 | 梁红, 叶代启, 林维明, 等. Sn催化剂对柴油车排气颗粒去除效果[J]. 化工学报, 2004, 55(11): 1869-1873. |
Liang H, Ye D Q, Lin W M, et al. Sn containing catalyst for particulate removal from diesel exhaust gases[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(11): 1869-1873. | |
8 | 李艳, 曹进辉, 刘原一, 等. 生物质固定床热解碳烟结构特征及反应活性[J]. 化工学报, 2022, 73(12): 5564-5571. |
Li Y, Cao J H, Liu Y Y, et al. Characterization and reactivity of soot from biomass pyrolysis in a fixed bed reactor[J]. CIESC Journal, 2022, 73(12): 5564-5571. | |
9 | Cao C M, Li X G, Zha Y Q, et al. Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode[J]. Nanoscale, 2016, 8(11): 5857-5864. |
10 | Raj S, Hattori M, Ozawa M. Ag-doped ZrO2 nanoparticles prepared by hydrothermal method for efficient diesel soot oxidation[J]. Materials Letters, 2019, 234: 205-207. |
11 | Xia Y, Lao J Z, Ye J R, et al. Role of two-electron defects on the CeO2 surface in CO preferential oxidation over CuO/CeO2 catalysts[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18421-18433. |
12 | Xiong J, Wei Y C, Zhang Y L, et al. Facile synthesis of 3D ordered macro-mesoporous Ce1- x Zr x O2 catalysts with enhanced catalytic activity for soot oxidation[J]. Catalysis Today, 2020, 355: 587-595. |
13 | Cui B, Li Y, Li S R, et al. Bi-doped ceria as a highly efficient catalyst for soot combustion: improved mobility of lattice oxygen in Ce x Bi1- x O y catalysts[J]. Energy & Fuels, 2020, 34(8): 9932-9939. |
14 | Haneda M, Towata A. Catalytic performance of supported Ag nano-particles prepared by liquid phase chemical reduction for soot oxidation[J]. Catalysis Today, 2015, 242: 351-356. |
15 | Mane R, Kim H, Han K, et al. Pivotal role of MnO x physicochemical structure in soot oxidation activity[J]. Fuel, 2023, 346: 128287. |
16 | Hinot K, Burtscher H, Weber A P, et al. The effect of the contact between platinum and soot particles on the catalytic oxidation of soot deposits on a diesel particle filter[J]. Applied Catalysis B: Environmental, 2007, 71(3/4): 271-278. |
17 | Lee K, Kosaka H, Sato S, et al. Effects of Cu loading and zeolite topology on the selective catalytic reduction with C3H6 over Cu/zeolite catalysts[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 73-86. |
18 | Zhang J Y, Liang J, Peng H G, et al. Cost-effective fast-synthesis of chabazite zeolites for the reduction of NO x [J]. Applied Catalysis B: Environmental, 2021, 292: 120163. |
19 | Smeets P J, Groothaert M H, van Teeffelen R M, et al. Direct NO and N2O decomposition and NO-assisted N2O decomposition over Cu-zeolites: elucidating the influence of the Cu-Cu distance on oxygen migration[J]. Journal of Catalysis, 2007, 245(2): 358-368. |
20 | Shin K, Zhang L, An H, et al. Interface engineering for a rational design of poison-free bimetallic CO oxidation catalysts[J]. Nanoscale, 2017, 9(16): 5244-5253. |
21 | Qi C X, Zheng Y H, Lin H, et al. CO oxidation over gold catalysts supported on CuO/Cu2O both in O2-rich and H2-rich streams: necessity of copper oxide[J]. Applied Catalysis B: Environmental, 2019, 253: 160-169. |
22 | Zhang Z H, Fan L P, Liao W Q, et al. Structure sensitivity of CuO in CO oxidation over CeO2-CuO/Cu2O catalysts [J]. Journal of Catalysis, 2022, 405: 333-345. |
23 | Venkataswamy P, Jampaiah D, Mukherjee D, et al. CuO/Zn-CeO2 nanocomposite as an efficient catalyst for enhanced diesel soot oxidation[J]. Emission Control Science and Technology, 2019, 5(4): 328-341. |
24 | Shen J T, Rao C, Fu Z Y, et al. The influence on the structural and redox property of CuO by using different precursors and precipitants for catalytic soot combustion[J]. Applied Surface Science, 2018, 453: 204-213. |
25 | Yu Y F, Meng M, Dai F F. The monolithic lawn-like CuO-based nanorods array used for diesel soot combustion under gravitational contact mode[J]. Nanoscale, 2013, 5(3): 904-909. |
26 | Deng C S, Huang Q Q, Zhu X Y, et al. The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO+CO model reaction[J]. Applied Surface Science, 2016, 389: 1033-1049. |
27 | Zhang R B, Lu K, Zong L J, et al. Control synthesis of CeO2 nanomaterials supported gold for catalytic oxidation of carbon monoxide[J]. Molecular Catalysis, 2017, 442: 173-180. |
28 | Yang J X, Ding H H, Zhu Z, et al. Surface modification of CeO2 nanoflakes by low temperature plasma treatment to enhance imine yield: influences of different plasma atmospheres[J]. Applied Surface Science, 2018, 454: 173-180. |
29 | Huang C Q, Li H X, Yang J M, et al. Ce0.6Zr0.3Y0.1O2 solid solutions-supported NiCo bimetal nanocatalysts for NH3 decomposition[J]. Applied Surface Science, 2019, 478: 708-716. |
30 | Rao K N, Venkataswamy P, Reddy B M. Structural characterization and catalytic evaluation of supported copper-ceria catalysts for soot oxidation[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 11960-11969. |
31 | Sudarsanam P, Hillary B, Mallesham B, et al. Designing CuO x nanoparticle-decorated CeO2 nanocubes for catalytic soot oxidation: role of the nanointerface in the catalytic performance of heterostructured nanomaterials[J]. Langmuir, 2016, 32(9): 2208-2215. |
32 | Sudarsanam P, Hillary B, Amin M H, et al. Heterostructured copper-ceria and iron-ceria nanorods: role of morphology, redox, and acid properties in catalytic diesel soot combustion[J]. Langmuir, 2018, 34(8): 2663-2673. |
33 | Aneggi E, Wiater D, de Leitenburg C, et al. Shape-dependent activity of ceria in soot combustion[J]. ACS Catalysis, 2014, 4(1): 172-181. |
34 | Goldstein H F, Kim D S, Yu P Y, et al. Raman study of CuO single crystals[J]. Physical Review B, 1990, 41(10): 7192-7194. |
35 | Khan M A, Nayan N, Shadiullah, et al. Surface study of CuO nanopetals by advanced nanocharacterization techniques with enhanced optical and catalytic properties[J]. Nanomaterials, 2020, 10(7): 1298. |
36 | Syrrokostas G, Govatsi K, Yannopoulos S N. High-quality, reproducible ZnO nanowire arrays obtained by a multiparameter optimization of chemical bath deposition growth[J]. Crystal Growth & Design, 2016, 16(4): 2140-2150. |
37 | Sun H C, Wang H, Qu Z P. Construction of CuO/CeO2 catalysts via the ceria shape effect for selective catalytic oxidation of ammonia[J]. ACS Catalysis, 2023, 13(2): 1077-1088. |
38 | Guo X, Meng M, Dai F, et al. NO x -assisted soot combustion over dually substituted perovskite catalysts La1- x K x Co1- y Pd y O3- δ [J]. Applied Catalysis B: Environmental, 2013, 142/143: 278-289. |
39 | Ren J L, Yu Y F, Dai F F, et al. Domain-confined catalytic soot combustion over Co3O4 anchored on a TiO2 nanotube array catalyst prepared by mercaptoacetic acid induced surface-grafting[J]. Nanoscale, 2013, 5(24): 12144-12149. |
40 | Cao C M, Xing L L, Yang Y X, et al. Diesel soot elimination over potassium-promoted Co3O4 nanowires monolithic catalysts under gravitation contact mode[J]. Applied Catalysis B: Environmental, 2017, 218: 32-45. |
41 | Xiong J, Wu Q Q, Mei X L, et al. Fabrication of spinel-type Pd x Co3- x O4 binary active sites on 3D ordered meso-macroporous Ce-Zr-O2 with enhanced activity for catalytic soot oxidation[J]. ACS Catalysis, 2018, 8(9): 7915-7930. |
42 | Zheng Y F, Su Y, Pang C H, et al. Interface-enhanced oxygen vacancies of CoCuO x catalysts in situ grown on monolithic Cu foam for VOC catalytic oxidation[J]. Environmental Science & Technology, 2022, 56(3): 1905-1916. |
[1] | Xuejie WANG, Guoqing CUI, Wenhan WANG, Yang YANG, Congkai WANG, Guiyuan JIANG, Chunming XU. Study on highly efficient methylcyclohexane dehydrogenation over Pt/NPC catalysts by internal electric heating [J]. CIESC Journal, 2024, 75(1): 292-301. |
[2] | Qiang ZHANG, Xianfei WANG, Kai WANG, Guangsheng LUO, Zhongkai LU. Advances in metal-free catalysts in copolymerization of epoxides and cyclic anhydrides [J]. CIESC Journal, 2024, 75(1): 60-73. |
[3] | Xinyu WANG, Yongtao WANG, Jia YAO, Haoran LI. Progress in the application of electron paramagnetic resonance in fundamental chemical engineering research [J]. CIESC Journal, 2024, 75(1): 74-82. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[7] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[8] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[9] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[10] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[11] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[12] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[13] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[14] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||