CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 575-583.DOI: 10.11949/0438-1157.20231104
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xingyu GAI1(), Yuxue YUE2, Chunhua YANG1, Zilong ZHANG1, Tianzi CAI1, Haifeng ZHANG1, Bolin WANG1(), Xiaonian LI2()
Received:
2023-10-26
Revised:
2024-01-16
Online:
2024-04-10
Published:
2024-02-25
Contact:
Bolin WANG, Xiaonian LI
盖星宇1(), 岳玉学2, 杨春华1, 张子龙1, 蔡天姿1, 张海丰1, 王柏林1(), 李小年2()
通讯作者:
王柏林,李小年
作者简介:
盖星宇(2000—),男,硕士研究生,gxy__neepu@163.com
基金资助:
CLC Number:
Xingyu GAI, Yuxue YUE, Chunhua YANG, Zilong ZHANG, Tianzi CAI, Haifeng ZHANG, Bolin WANG, Xiaonian LI. Carbon supported Cs- and Cu-based catalysts for gas-phase dehydrochlorination of 1,1,2-trichloroethane[J]. CIESC Journal, 2024, 75(2): 575-583.
盖星宇, 岳玉学, 杨春华, 张子龙, 蔡天姿, 张海丰, 王柏林, 李小年. 碳负载Cs和Cu基催化剂用于1,1,2-三氯乙烷的气相脱氯化氢[J]. 化工学报, 2024, 75(2): 575-583.
Add to citation manager EndNote|Ris|BibTeX
Catalyst | Active component loading/%(mass) | |
---|---|---|
Cu/C | Cs/C | |
Cu/AC | 5.03 | 0 |
Cs/AC | 0 | 4.98 |
Table 1 ICP values for two catalysts
Catalyst | Active component loading/%(mass) | |
---|---|---|
Cu/C | Cs/C | |
Cu/AC | 5.03 | 0 |
Cs/AC | 0 | 4.98 |
Fig.1 Effect of different temperatures on catalyst performance and comparison of catalyst activity (reaction conditions:catalyst 0.4 g, GHSV = 1000 h-1, p = 0.1 MPa)
Fig.2 Depicts the effect of testing different GHSV on the catalytic performance of the catalysts (reaction conditions: catalyst 0.4 g, p = 0.1 MPa, T = 573 K)
1 | Kester J E. Vinylidene Chloride (VDC)[M]// Encyclopedia of Toxicology. Amsterdam: Elsevier, 2014: 942-947. |
2 | Chaliha M, Cusack A, Currie M, et al. Effect of packaging materials and storage on major volatile compounds in three Australian native herbs[J]. Journal of Agricultural and Food Chemistry, 2013, 61(24): 5738-5745. |
3 | Choi Y H, Lee W Y. Effect of second metals and Cu content on catalyst performance of Ni-Cu/SiO2 in the hydrodechlorination of 1,1,2-trichloroethane into vinyl chloride monomer[J]. Journal of Molecular Catalysis A: Chemical, 2001, 174(1/2): 193-204. |
4 | Milchert E, Paździoch W. Optimization of dehydrochlorination of waste 1,1,2-trichloroethane to vinylidene chloride[J]. Industrial & Engineering Chemistry Research, 1999, 38(2): 391-395. |
5 | Mochida I, Watanabe H, Fujitsu H, et al. An acid-proof basic catalyst for the selective dehydrochlorination of 1,1,2-trichloroethane[J]. Journal of the Chemical Society, Chemical Communications, 1980(17): 793. |
6 | Adema D M M, Vink I G J. A comparative study of the toxicity of 1,1,2-trichloroethane, dieldrin, pentachlorophenol and 3,4-dichloroaniline for marine and fresh water organisms[J]. Chemosphere, 1981, 10(6): 533-554. |
7 | Mochida I, Yasumoto Y, Fujitsu H, et al. Catalytic dehydrochlorination of 1,1,2-trichloroethane (TCE) into 1,1-dichloroethene (DCE) over cesium nitrate supported on silica gel[J]. Chemistry Letters, 1992, 21(3): 461-464. |
8 | Lee A F, Carr P, Wilson K. Direct observation of extremely low temperature catalytic dehydrochlorination of 1,1,1-trichloroethane over platinum[J]. The Journal of Physical Chemistry B, 2004, 108(39): 14811-14814. |
9 | He Z H, Leung K T. Room-temperature chemisorption and thermal evolution of perchloroethylene and trichloroethylene on Si(1 1 1) 7 × 7: formation of chlorinated vinylene and vinylidene and acetylide adspecies, and thermal etching reactions[J]. Surface Science, 2005, 583(2/3): 179-190. |
10 | Kokubo K, Kitasaka K, Oshima T. Supramolecular triplet photosensitizer. Effects of the cation binding mode on E-Z isomerization of 1,2-dichloroethylene[J]. Organic Letters, 2006, 8(8): 1597-1600. |
11 | Turton D A, Martin D F, Wynne K. Optical Kerr-effect study of trans- and cis-1,2-dichloroethene: liquid-liquid transition or super-Arrhenius relaxation[J]. Physical Chemistry Chemical Physics, 2010, 12(16): 4191-4200. |
12 | Tang C, Jin Y X, Wang X X, et al. Highly selective gas-phase synthesis of 1,1-dichloroethylene from 1,1,2-trichloroethane over supported amine catalysts[J]. Chemical Research in Chinese Universities, 2015, 31(5): 787-791. |
13 | Song T Y, Dong Z X, Song J D, et al. Dehydrochlorination of 1,1,2-trichloroethane over SiO2-supported alkali and transition metal catalysts: tunable selectivity controlled by the acid-base properties of the catalysts[J]. Applied Catalysis B: Environmental, 2018, 236: 368-376. |
14 | Tian C, Lu C S, Wang B L, et al. Mesoporous carbon nitride as a basic catalyst in dehydrochlorination of 1,1,2-trichloroethane into 1,1-dichloroethene[J]. RSC Advances, 2015, 5(126): 103829-103833. |
15 | 胡益浩, 宋通洋, 王月娟, 等. Zn/SiO2气相催化裂解1,1,2-三氯乙烷脱HCl: 酸性与失活[J]. 物理化学学报, 2017, 33(5): 1017-1026. |
Hu Y H, Song T Y, Wang Y J, et al. Gas phase dehydrochlorination of 1,1,2-trichloroethane over Zn/SiO2 catalysts: acidity and deactivation[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 1017-1026. | |
16 | Tang C, Jin Y X, Lu J Q, et al. Highly efficient Mg(OH)Cl/SiO2 catalysts for selective dehydrochlorination of 1,1,2-trichloroethane[J]. Applied Catalysis A: General, 2015, 508: 10-15. |
17 | Wang B S, Qin L, Mu T C, et al. Are ionic liquids chemically stable?[J]. Chemical Reviews, 2017, 117(10): 7113-7131. |
18 | Xin B W, Hao J C. Imidazolium-based ionic liquids grafted on solid surfaces[J]. Chemical Society Reviews, 2014, 43(20): 7171-7187. |
19 | Zhang Z L, Zuo F M, Cai T Z, et al. Modification of insulating oils and oil-based titanium dioxide nanofluids for transformers: a review[J]. Physical Chemistry Chemical Physics, 2023, 25(34): 22565-22582. |
20 | Goossens K, Lava K, Bielawski C W, et al. Ionic liquid crystals: versatile materials[J]. Chemical Reviews, 2016, 116(8): 4643-4807. |
21 | Zhang P Z, Jiang Z B, Cui Y H, et al. Catalytic performance of ionic liquid for dehydrochlorination reaction: excellent activity and unparalled stability[J]. Applied Catalysis B: Environmental, 2019, 255: 117757. |
22 | Yue Y X, Wang B L, Zhang Y T, et al. Regulation of the liquid-solid interface of Cs catalysts for the synthesis of 1,1-dichloroethylene from 1,1,2-trichloroethane[J]. Applied Surface Science, 2022, 599: 154033. |
23 | Mochida I, Uchino A, Fujitsu H, et al. Catalytic dehydrochlorination of 1,1,2-trichloroethane into 1,1-dichloroethylene over alumina promoted by water[J]. Chemistry Letters, 1975, 4(7): 745-746. |
24 | Martin M, Richard B D H. Splitting-off of hydrogen halide from halogenated hydrocarbons[Z]. U.S.S.R., 1945, 2: 372-379. |
25 | Fujitsu H, Takagi T, Mochida I. Influences of supporting silica gel on the catalytic activity of B-18 crown ether-KCl complex for the selective dehydrochlorination of 1,1,2-trichloroethane[J]. Bulletin of the Chemical Society of Japan, 1985, 58(5): 1589-1590. |
26 | 靳燕霞, 汤岑, 孟秀清, 等. 气相法合成偏二氯乙烯的高稳定CsNO3/SiO2催化剂[J]. 物理化学学报, 2016, 32(2): 510-518. |
Jin Y X, Tang C, Meng X Q, et al. Highly stable CsNO3/SiO2 catalysts for the synthesis of vinylidene chloride using a gaseous phase method[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 510-518. | |
27 | Hussain S, Aneggi E, Briguglio S, et al. Enhanced ibuprofen removal by heterogeneous-Fenton process over Cu/ZrO2 and Fe/ZrO2 catalysts[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 103586. |
28 | Wang H Y, Li G Q, Zhang S T, et al. Preparation of Cu-loaded biomass-derived activated carbon catalysts for catalytic wet air oxidation of phenol[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 2908-2920. |
29 | El-Deeb H, Nassr A B A A, Bron M. Cu@Pt/CNT catalysts for oxygen reduction prepared by a facile two-step synthesis: chemical vs. electrochemical leaching[J]. Journal of Electroanalytical Chemistry, 2023, 946: 117724. |
30 | Valov P M, Leiman V I. Size effects in the melting and crystallization temperatures of copper chloride nanocrystals in glass[J]. Journal of Experimental and Theoretical Physics Letters, 1997, 66(7): 510-516. |
31 | Ullah R, Bowmaker G A, Laslau C, et al. Synthesis of polyaniline by using CuCl2 as oxidizing agent[J]. Synthetic Metals, 2014, 198: 203-211. |
32 | Espinós J P, Morales J, Barranco A, et al. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts[J]. The Journal of Physical Chemistry B, 2002, 106(27): 6921-6929. |
33 | Zhang Z L, Zhang H F, Wang B L, et al. Migration: a neglected potential contribution of HCl-oxidized Au (0)[J]. Molecules, 2023, 28(4): 1600. |
34 | Wang X, Kang Y, Li J, et al. Influence of cerium and cesium promoters on vanadium catalyst for sulfur dioxide oxidation[J]. Korean Journal of Chemical Engineering, 2019, 36(5): 650-659. |
35 | 王正峰, 谢雨杭, 范永春, 等. 活性炭负载Ni-N-C催化剂提升电解碳酸氢盐法拉第效率[J]. 化工学报, 2023, 74(11): 4570-4577. |
Wang Z F, Xie Y H, Fan Y H, et al. Active carbons supported Ni-NC catalysts for enhanced faraday efficiency of electrolytic bicarbonate[J]. CIESC Journal, 2023, 74(11): 4570-4577. |
[1] | Qi LIU, Zikang CHEN, Yu PIAO, Peng XIAO, Yafen GE, Yanjun GONG. Zeolite catalysts for catalytic cracking of hydrocarbon to increase light olefins selectivity [J]. CIESC Journal, 2024, 75(1): 120-137. |
[2] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[3] | Guoyi XIAN, Lifang CHEN, Zhiwen QI. DFT-based study of liquid-phase Beckmann rearrangement mechanism of cyclohexanone oxime [J]. CIESC Journal, 2024, 75(1): 302-311. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[6] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[7] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[8] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[11] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[12] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[13] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[14] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[15] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||