CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3338-3347.DOI: 10.11949/0438-1157.20240274
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Shuying WANG(), Tao ZUO, Zhiwei SHI, Xiaoming FAN(
), Weixin ZHANG(
)
Received:
2024-03-07
Revised:
2024-05-08
Online:
2024-10-10
Published:
2024-09-25
Contact:
Xiaoming FAN, Weixin ZHANG
通讯作者:
范小明,张卫新
作者简介:
王舒英(1999—),女,硕士研究生,2573533828@qq.com
基金资助:
CLC Number:
Shuying WANG, Tao ZUO, Zhiwei SHI, Xiaoming FAN, Weixin ZHANG. Synthesis and sodium ion storage properties of cation exchange resin based mesoporous graphitic carbon[J]. CIESC Journal, 2024, 75(9): 3338-3347.
王舒英, 左涛, 石志伟, 范小明, 张卫新. 阳离子交换树脂基介孔石墨化碳合成与储钠性能[J]. 化工学报, 2024, 75(9): 3338-3347.
Fig.2 SEM images of different samples [(a), (b)]; EDS mapping results of different samples [(c), (d)]; histogram of Fe content in ion-exchanged resin and acid-etched resin by thermal treatment (e);XRD patterns of the sample HCF-700 (f)
Fig.4 XRD patterns (a), XPS survey spectra (b), Raman spectra (c), C 1s XPS spectra (d), N2 adsorption/desorption isotherms (e) and pore size distribution (f) of different samples
Fig.5 CV curves for the first 3 cycles of HCH-700 (a) and HC-700 (b); rate performance of different samples at current densities of 0.1—30 A·g-1 (c); long-term stability test of different samples at 0.5 A·g-1 (d); long-term stability test of HCH-700 at 10 and 20 A·g-1 (e); comparison of rate performance of HCH-700 with materials in different references (f); EIS spectra of HCH-700 (g) and HC-700 (h) under different cycle numbers
Fig.6 CV curves of HCH-700 (a) and HC-700 (b) at different scan rates; linear relationship between peak current and scan rate in the CV curve of HCH-700 (c) and HC-700 (d); pseudocapacitance ratio at different scan rates (e); actual pseudocapacity of the HCH-700 and HC-700 under 30 A·g-1 (f)
1 | Li M, Lu J, Chen Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561. |
2 | Liu C, Wang B W, Xu L Q, et al. Novel nonstoichiometric niobium oxide anode material with rich oxygen vacancies for advanced lithium-ion capacitors[J]. ACS Applied Materials & Interfaces, 2023, 15(4): 5387-5398. |
3 | 王晓波, 赵青山, 程智年, 等. 高性能碳基储能材料的设计、合成与应用[J]. 化工学报, 2020, 71(6): 2660-2677. |
Wang X B, Zhao Q S, Cheng Z N, et al. Design, synthesis and application of high-performance carbon-based energy storage materials[J]. CIESC Journal, 2020, 71(6): 2660-2677. | |
4 | 郭行, 韩纹莉, 董晓玲, 等. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806. |
Guo H, Han W L, Dong X L, et al. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode[J]. CIESC Journal, 2022, 73(4): 1794-1806. | |
5 | Xia S X, Yan Y H, Sun H, et al. Engineering unique vesicle structured tin phosphides@P/N co-doped carbon anode for high-performance sodium/lithium-ion batteries[J]. Rare Metals, 2022, 41(5): 1496-1503. |
6 | Fan C L, Zhang R S, Luo X H, et al. Epoxy phenol novolac resin: a novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries[J]. Carbon, 2023, 205: 353-364. |
7 | Wang P, Fan L P, Yan L, et al. Low-cost water caltrop shell-derived hard carbons with high initial coulombic efficiency for sodium-ion battery anodes[J]. Journal of Alloys and Compounds, 2019, 775: 1028-1035. |
8 | Li L, Zheng Y, Zhang S L, et al. Recent progress on sodium ion batteries: potential high-performance anodes[J]. Energy & Environmental Science, 2018, 11(9): 2310-2340. |
9 | Han X, Zhou S H, Liu H, et al. Noncrystalline carbon anodes for advanced sodium-ion storage[J]. Small Methods, 2023, 7(3): e2201508. |
10 | Zhu Y Y, Wang Y H, Wang Y T, et al. Research progress on carbon materials as negative electrodes in sodium- and potassium-ion batteries[J]. Carbon Energy, 2022, 4(6): 1182-1213. |
11 | Zhang M H, Li Y, Wu F, et al. Boost sodium-ion batteries to commercialization: strategies to enhance initial Coulombic efficiency of hard carbon anode[J]. Nano Energy, 2021, 82: 105738. |
12 | Yu Z L, Xin S, You Y, et al. Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage[J]. Journal of the American Chemical Society, 2016, 138(45): 14915-14922. |
13 | Ganesan V, Lee Y H, Jung H, et al. Porous polyhedral carbon matrix for high-performance Li/Na/K-ion battery anodes[J]. Carbon Letters, 2023, 33(7): 2189-2198. |
14 | Velez V, Ramos-Sánchez G, Lopez B, et al. Synthesis of novel hard mesoporous carbons and their applications as anodes for Li and Na ion batteries[J]. Carbon, 2019, 147: 214-226. |
15 | Xiao L F, Lu H Y, Fang Y J, et al. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J]. Advanced Energy Materials, 2018, 8(20): 1703238. |
16 | Cai C C, Chen Y A, Hu P, et al. Regulating the interlayer spacings of hard carbon nanofibers enables enhanced pore filling sodium storage[J]. Small, 2022, 18(6): e2105303. |
17 | Song M H, Song Q, Zhang T, et al. Growing curly graphene layer boosts hard carbon with superior sodium-ion storage[J]. Nano Research, 2023, 16(7): 9299-9309. |
18 | Qi Y R, Lu Y X, Liu L L, et al. Retarding graphitization of soft carbon precursor: from fusion-state to solid-state carbonization[J]. Energy Storage Materials, 2020, 26: 577-584. |
19 | Matei Ghimbeu C, Górka J, Simone V, et al. Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects[J]. Nano Energy, 2018, 44: 327-335. |
20 | Krivchenkova E A, Panfilova L A, Chernova I A. An analysis of the range and quality of cation-exchange resins available in the Russian market and intended for use in thermal power plant water treatment installations[J]. Thermal Engineering, 2021, 68(10): 785-793. |
21 | Tran L B, Nguyen T T, Padungthon S, et al. Advanced natural hydrated iron-alum oxides cation exchange resin for simultaneous phosphate and hardness removal[J]. NPJ Clean Water, 2022, 5: 43. |
22 | Víctor-Ortega M D, Ochando-Pulido J M, Martínez-Ferez A. Iron removal and reuse from Fenton-like pretreated olive mill wastewater with novel strong-acid cation exchange resin fixed-bed column[J]. Journal of Industrial and Engineering Chemistry, 2016, 36: 298-305. |
23 | Riveros P A. The extraction of Fe(Ⅲ) using cation-exchange carboxylic resins[J]. Hydrometallurgy, 2004, 72(3/4): 279-290. |
24 | Kajjumba G W, Fischer D, Risso L, et al. Application of cerium and lanthanum coagulants in wastewater treatment—a comparative assessment to magnesium, aluminum, and iron coagulants[J]. Chemical Engineering Journal, 2021, 426: 131268. |
25 | 智研咨询发布:中国离子交换树脂行业市场研究报告(2023版)[EB/OL]. (2023-05-04)[2023-11-15]. . |
Intelligence research: market research repot on China’s ion exchange resin industry (2023 edition)[EB/OL]. (2023-05-04)[2023-11-15]. . | |
26 | Shi W P, Zhang Y M, Tian Z Q, et al. Low temperature synthesis of polyhedral hollow porous carbon with high rate capability and long-term cycling stability as Li-ion and Na-ion battery anode material[J]. Journal of Power Sources, 2018, 398: 149-158. |
27 | Zhou K, Hu M X, He Y B, et al. Transition metal assisted synthesis of tunable pore structure carbon with high performance as sodium/lithium ion battery anode[J]. Carbon, 2018, 129: 667-673. |
28 | Zhao J H, He X X, Lai W H, et al. Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries[J]. Advanced Energy Materials, 2023, 13(18): 2300444. |
29 | Wang X, Li X, Lu Z, et al. Constructing porous lignin-based carbon nanofiber anodes with flexibility for high-performance lithium/sodium-ion batteries[J]. Materials Today Sustainability, 2022, 20: 100234. |
30 | Niu S S, Wang Z Y, Yu M L, et al. MXene-based electrode with enhanced pseudocapacitance and volumetric capacity for power-type and ultra-long life lithium storage[J]. ACS Nano, 2018, 12(4): 3928-3937. |
31 | Huang S F, Li Z P, Wang B, et al. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage[J]. Advanced Functional Materials, 2018, 28(10): 1706294. |
32 | Lu P, Sun Y, Xiang H F, et al. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(8): 1702434. |
33 | Zhu Z Y, Liang F, Zhou Z R, et al. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(4): 1513-1522. |
34 | Wang X, Zhu F L, Xiao M J, et al. N-doped hollow porous carbon microspheres with highrate performance as anode for sodium-ion batteries[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(10): 7913-7922. |
35 | Du L L, Wu W, Luo C, et al. Lignin-derived nitrogen-doped porous carbon as a high-rate anode material for sodium ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(2): A423-A428. |
36 | Gao Y P, Piao S Y, Jiang C H, et al. Navel orange peel-derived hard carbons as high performance anode materials of Na and Li-ion batteries[J]. Diamond and Related Materials, 2022, 129: 109329. |
37 | Jeon I, Yang D C, Yadav D, et al. Sodium storage behavior and long cycle stability of boron-doped carbon nanofibers for sodium-ion battery anodes[J]. Electrochimica Acta, 2023, 439: 141730. |
38 | Su L, Kong L N, Hao S G, et al. Honeycomb-like porous carbon with nanographitic domains, supported on graphene layers: applicability for lithium/sodium storage[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10986-10994. |
39 | Xiong T Z, Gao Y X, Huang P, et al. Actual pseudocapacity for Li ion storage in tunable core-shell electrode architectures[J]. EcoMat, 2022, 4(5): e12217. |
[1] | Zhengliang HUANG, Mingrui FENG, Qi SONG, Congjing REN, Yao YANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Inhibitory effect of premixed feedstock on particle agglomeration in fluidized pyrolysis reaction of waste resin [J]. CIESC Journal, 2024, 75(9): 3094-3102. |
[2] | Dan PENG, Junjie LU, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress of functional electrolyte for high-voltage LiCoO2 battery [J]. CIESC Journal, 2024, 75(9): 3028-3040. |
[3] | Yong DING, Wenjian LI, Zhaoyu CHEN, Lihui CAO, Xuanming LIU, Qiangqiang REN, Song HU, Jun XIANG. Aerobic pyrolysis kinetic and product characteristics of waste crystalline silicon photovo ltaic modules’ EVA [J]. CIESC Journal, 2024, 75(9): 3310-3319. |
[4] | Xuehong WU, Xin WEI, Jiawen HOU, Cai LYU, Yong LIU, He LIU, Zhijuan CHANG. Preparation of carbon nanotubes by pyrolysis method and their application in heat dissipation coatings [J]. CIESC Journal, 2024, 75(9): 3360-3368. |
[5] | Hongzhe YAO, Feiyu HUANG, Song YANG, Mei ZHONG, Zhenghua DAI. Kinetic modeling of the high-temperature rapid pyrolysis auto-reaction network of heavy oil [J]. CIESC Journal, 2024, 75(7): 2644-2655. |
[6] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
[7] | Huiyu CHAO, Zhenmin BAI, Hanqing HOU, Lizhi TIAN, Hong LI, Xiaoquan FANG, Xiaohua SHI. Thermodynamics analysis on liquid-phase synthesis of cyanuric acid [J]. CIESC Journal, 2024, 75(6): 2157-2165. |
[8] | Xinzhe PEI, Zhuxing SUN, Yuxiang LIN, Chaoyang ZHANG, Yong QIAN, Xingcai LYU. Study of anode materials for electrocatalytic decomposition of liquid ammonia [J]. CIESC Journal, 2024, 75(5): 1843-1854. |
[9] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[10] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[11] | Yunxuan LI, Xinyue LIU, Xi CHEN, Wen LIU, Mingyue ZHOU, Xingying LAN. Energy storage technologies based on solid-liquid redox-targeting reactions: materials, devices, and kinetics [J]. CIESC Journal, 2024, 75(4): 1222-1240. |
[12] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[13] | Xi WU, Bo SUN, Yindong LIU, Chuanlei QI, Kaiyi CHEN, Luhai WANG, Chong XU, Yongfeng LI. Research progress in preparation technology of pitch-based carbon anode materials for sodium-ion batteries [J]. CIESC Journal, 2024, 75(4): 1270-1283. |
[14] | Na PAN, Chang TIAN, Lankun HUAI, Yuyu LIU, Fenfen ZHANG, Xiaomei GAO, Wei LIU, Liangguo YAN, Yanxia ZHAO. Synthesis and application of polymerized Al-Ti based flocculant [J]. CIESC Journal, 2024, 75(3): 1009-1018. |
[15] | Haowen LI, Hao LAN, Youdan ZHENG, Yonghui SUN, Zixin YANG, Qianshi SONG, Xiaohan WANG. Pyrolysis and coking behavior of typical liquid hydrocarbon fuels in hot pipe [J]. CIESC Journal, 2024, 75(2): 626-636. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 125
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||