CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3210-3220.DOI: 10.11949/0438-1157.20240323
• Separation engineering • Previous Articles Next Articles
Yuhao TANG1(), Yingying ZHANG1, Zhiwei ZHAO1, Mengyue LU1, Feifei ZHANG1,2(
), Xiaoqing WANG1,2, Jiangfeng YANG1,2(
)
Received:
2024-03-21
Revised:
2024-04-30
Online:
2024-10-10
Published:
2024-09-25
Contact:
Feifei ZHANG, Jiangfeng YANG
唐宇昊1(), 张迎迎1, 赵智伟1, 鲁梦悦1, 张飞飞1,2(
), 王小青1,2, 杨江峰1,2(
)
通讯作者:
张飞飞,杨江峰
作者简介:
唐宇昊(2001—),男,学士,18727415796@163.com
基金资助:
CLC Number:
Yuhao TANG, Yingying ZHANG, Zhiwei ZHAO, Mengyue LU, Feifei ZHANG, Xiaoqing WANG, Jiangfeng YANG. Ultra-microporous Sc/In-CPM-66A with low-polar pore surfaces for efficient separation of CH4/N2[J]. CIESC Journal, 2024, 75(9): 3210-3220.
唐宇昊, 张迎迎, 赵智伟, 鲁梦悦, 张飞飞, 王小青, 杨江峰. 弱极性超微孔Sc/In-CPM-66A用于CH4/N2吸附分离性能[J]. 化工学报, 2024, 75(9): 3210-3220.
Fig.2 (a) PXRD patterns of In-CPM-66A and Sc-CPM-66A; (b) PXRD patterns of water vapor stability of In-CPM-66A and Sc-CPM-66A; (c) In-CPM-66A after as shaped/multiple adsorption tests/ multiple breakthrough tests; (d) Sc-CPM-66A after as shaped/multiple adsorption tests/multiple breakthrough tests
Fig.8 (a) IAST selectivity of CH4/N2 (50/50) at 298 K; (b) IAST selectivity of CH4/N2 (50/50) at 273 K; (c) Comparison of adsorption capacity and selectivity of CH4 and N2 in some typical MOF at 298 K and 0.1 MPa
Fig.9 (a)CH4/N2 adsorption heat of Sc-CPM-66A at 298 K; (b)CH4/N2 adsorption heat of In-CPM-66A at 298 K; (c)Comparison of CH4 adsorption heat of some previously reported CH4 selective materials
Fig.10 (a) Breakthrough curve of In-CPM-66A for CH4/N2 (20/80); (b) Breakthrough curve of In-CPM-66A for CH4/N2 (50/50); (c) Breakthrough cycle curves of In-CPM-66A for CH4/N2 (50/50); (d) Breakthroughcurve of Sc-CPM-66A for CH4/N2 (20/80); (e) Breakthrough curve of Sc-CPM-66A forCH4/N2 (50/50); (f) Breakthrough cycle curves of Sc-CPM-66A for CH4/N2 (50/50)
1 | Lenton T M, Rockström J, Gaffney O, et al. Climate tipping points-too risky to bet against[J]. Nature, 2019, 575: 592-595. |
2 | He Y B, Zhou W, Qian G D, et al. Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 5657-5678. |
3 | Saha D, Grappe H A, Chakraborty A, et al. Postextraction separation, on-board storage, and catalytic conversion of methane in natural gas: a review[J]. Chemical Reviews, 2016, 116(19): 11436-11499. |
4 | Sun Q, Wang M, Li Z, et al. Nitrogen removal from natural gas using solid boron: a first-principles computational study[J]. Fuel, 2013, 109: 575-581. |
5 | Sun Q, Sun C X, Du A J, et al. Charged-controlled separation of nitrogen from natural gas using boron nitride fullerene[J]. The Journal of Physical Chemistry C, 2014, 118(51): 30006-30012. |
6 | Yang J F, Bai H H, Shang H, et al. Experimental and simulation study on efficient CH4/N2 separation by pressure swing adsorption on silicalite-1 pellets[J]. Chemical Engineering Journal, 2020, 388: 124222. |
7 | Wu Y Q, Yuan D H, Zeng S, et al. Significant enhancement in CH4/N2 separation with amine-modified zeolite Y[J]. Fuel, 2021, 301: 121077. |
8 | Kim J, Maiti A, Lin L C, et al. New materials for methane capture from dilute and medium-concentration sources[J]. Nature Communications, 2013, 4: 1694. |
9 | Liu J Q, Shang H, Yang J F, et al. Novel zeolite/carbon monolith adsorbents for efficient CH4/N2 separation[J]. Chemical Engineering Journal, 2021, 426: 130163. |
10 | Kivi C E, Gelfand B S, Dureckova H, et al. 3D porous metal-organic framework for selective adsorption of methane over dinitrogen under ambient pressure[J]. Chemical Communications, 2018, 54(100): 14104-14107. |
11 | Bao Z B, Yu L, Ren Q L, et al. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework[J]. Journal of Colloid and Interface Science, 2011, 353(2): 549-556. |
12 | Soroodan Miandoab E, Kentish S E, Scholes C A. Non-ideal modelling of polymeric hollow-fibre membrane systems: pre-combustion CO2 capture case study[J]. Journal of Membrane Science, 2020, 595: 117470. |
13 | Liang Z J, Marshall M, Chaffee A L. CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X)[J]. Energy & Fuels, 2009, 23(5): 2785-2789. |
14 | Chen R D, Li J Q, Zhou F R, et al. Zr-based metal-organic framework with wall-shared dual ultramicroporous channels for effective CH4/N2 separation[J]. Industrial & Engineering Chemistry Research, 2023, 62(33): 13144-13152. |
15 | Wu X F, Yuan B, Bao Z B, et al. Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework[J]. Journal of Colloid and Interface Science, 2014, 430: 78-84. |
16 | Yu J M, Xie L H, Li J R, et al. CO2 capture and separations using MOF: computational and experimental studies[J]. Chemical Reviews, 2017, 117(14): 9674-9754. |
17 | Wu Y Q, Yuan D H, He D W, et al. Decorated traditional zeolites with subunits of metal-organic frameworks for CH4/N2 separation[J]. Angewandte Chemie International Edition, 2019, 58(30): 10241-10244. |
18 | Lin R B, Wu H, Li L B, et al. Boosting ethane/ethylene separation within isoreticular ultramicroporous metal-organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(40): 12940-12946. |
19 | Yao K X, Chen Y L, Lu Y, et al. Ultramicroporous carbon with extremely narrow pore distribution and very high nitrogen doping for efficient methane mixture gases upgrading[J]. Carbon, 2017, 122: 258-265. |
20 | Nguyen P T K, Nguyen H T D, Pham H Q, et al. Synthesis and selective CO2 capture properties of a series of hexatopic linker-based metal-organic frameworks[J]. Inorganic Chemistry, 2015, 54(20): 10065-10072. |
21 | Li L Y, Yang L F, Wang J W, et al. Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework[J]. Chemical Engineers Journal, 2018, 64(10): 3681-3689. |
22 | Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932. |
23 | Cui X L, Chen K J, Xing H B, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene[J]. Science, 2016, 353(6295): 141-144. |
24 | Chen B L, Liang C D, Yang J, et al. A microporous metal-organic framework for gas-chromatographic separation of alkanes[J]. Angewandte Chemie International Edition, 2006, 45(9): 1390-1393. |
25 | Zhang F F, Li K J, Chen J, et al. Efficient N2/CH4 separation in a stable metal-organic framework with high density of open Cr sites[J]. Separation and Purification Technology, 2022, 281: 119951. |
26 | Pillai R S, Yoon J W, Lee S J, et al. N2 capture performances of the hybrid porous MIL-101(Cr): from prediction toward experimental testing[J]. The Journal of Physical Chemistry C, 2017, 121(40): 22130-22138. |
27 | Jaramillo D E, Reed D A, Jiang H Z H, et al. Selective nitrogen adsorption via backbonding in a metal-organic framework with exposed vanadium sites[J]. Nature Materials, 2020, 19(5): 517-521. |
28 | Zhang F F, Shang H, Wang L, et al. Construction of a porous metal-organic framework with a high density of open Cr sites for record N2/O2 separation[J]. Advanced Materials, 2021, 33(37): e2100866. |
29 | Chen Y, Wang Y, Wang Y, et al. Improving CH4 uptake and CH4/N2 separation in pillar-layered metal-organic frameworks using a regulating strategy of interlayer channels[J]. Chemical Engineers Journal, 2022, 68(11): e17819. |
30 | Wang S M, Shivanna M, Yang Q Y. Nickel-based metal-organic frameworks for coal-bed methane purification with record CH4/N2 selectivity[J]. Angewandte Chemie International Edition, 2022, 61(15): e202201017. |
31 | Oschatz M, Antonietti M. A search for selectivity to enable CO2 capture with porous adsorbents[J]. Energy & Environmental Science, 2018, 11(1): 57-70. |
32 | Chang M, Wang F, Wei Y, et al. Separation of CH4/N2 by an ultra-stable metal-organic framework with the highest breakthrough selectivity[J]. Chemical Engineers Journal, 2022, 68(9): e17794. |
33 | Chang M, Ren J H, Yang Q Y, et al. A robust calcium-based microporous metal-organic framework for efficient CH4/N2 separation[J]. Chemical Engineering Journal, 2021, 408: 127294. |
34 | Ren X Y, Sun T J, Hu J L, et al. Highly enhanced selectivity for the separation of CH4 over N2 on two ultra-microporous frameworks with multiple coordination modes[J]. Microporous and Mesoporous Materials, 2014, 186: 137-145. |
35 | Nandi S, Mansouri A, Dovgaliuk I, et al. A robust ultra-microporous cationic aluminum-based metal-organic framework with a flexible tetra-carboxylate linker[J]. Communications Chemistry, 2023, 6(1): 144. |
36 | Guo P T, Chen Y L, Chang M, et al. A stable Cu(Ⅰ)-based ultramicroporous NKMOF-8-Br with high CH4 uptake for efficient separation of CH4/N2 mixtures[J]. Journal of Chemical & Engineering Data, 2022, 67(7): 1654-1662. |
37 | Du S J, Wu Y, Wang X J, et al. Facile synthesis of ultramicroporous carbon adsorbents with ultra-high CH4 uptake by in situ ionic activation[J]. Chemical Engineers Journal, 2020, 66(7): e16231. |
38 | Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504. |
39 | Lv D F, Wu Y, Chen J Y, et al. Improving CH4/N2 selectivity within isomeric Al-based MOF for the highly selective capture of coal-mine methane[J]. Chemical Engineers Journal, 2020, 66(9): e16287. |
40 | Niu Z, Cui X L, Pham T, et al. A metal-organic framework based methane nano-trap for the capture of coal-mine methane[J]. Angewandte Chemie International Edition, 2019, 58(30): 10138-10141. |
41 | Hu J L, Sun T J, Liu X W, et al. Rationally tuning the separation performances of [M3(HCOO)6] frameworks for CH4/N2 mixtures via metal substitution[J]. Microporous and Mesoporous Materials, 2016, 225: 456-464. |
42 | Chang M, Yan T A, Wei Y, et al. Enhancing CH4 capture from coalbed methane through tuning van der Waals affinity within isoreticular Al-based metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25374-25384. |
43 | Yang H J, Peng F, Schier D E, et al. Selective crystallization of rare-earth ions into cationic metal-organic frameworks for rare-earth separation[J]. Angewandte Chemie International Edition, 2021, 60(20): 11148-11152. |
[1] | Mingjun YANG, Guangjun GONG, Jianan ZHENG, Yongchen SONG. Production characteristics and model of muddy hydrates with low permeability by depressurization [J]. CIESC Journal, 2024, 75(8): 2909-2916. |
[2] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
[3] | Wenxuan ZHOU, Zhen LIU, Fujian ZHANG, Zhongqiang ZHANG. Mechanism of water treatment by high permeability-selectivity time dimension membrane method [J]. CIESC Journal, 2024, 75(7): 2583-2593. |
[4] | Taohong WANG, Chao WANG, Zheng LI, Ying LIU, Ge TIAN, Ganggang CHANG, Xiaoyu YANG, Zongbi BAO. Immobilize Cu(Ⅰ) into π-complexed MOF adsorbent for selectivity separation of ethane/ethylene [J]. CIESC Journal, 2024, 75(7): 2565-2573. |
[5] | Zhong JI, Yanling ZHAO, Yumeng CHEN, Linxia GAO, Yipeng WANG, Huan LIU. Adsorption performance and mechanism of ZSM-5 molecular sieves on typical coating VOCs [J]. CIESC Journal, 2024, 75(6): 2332-2343. |
[6] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
[7] | Zijia ZHANG, Xinyue QIU, Xiang SUN, Zhibin LUO, Haizhong LUO, Gaohong HE, Xuehua RUAN. Progress in molecular structure design for polyimide membrane materials to enhance CO2 permeation ability [J]. CIESC Journal, 2024, 75(4): 1137-1152. |
[8] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[9] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
[10] | Yuan MENG, Shan NI, Yafeng LIU, Wenjie WANG, Yue ZHAO, Yudan ZHU, Liangrong YANG. Adsorption properties of functionalized porous carbon nitride materials for uranium [J]. CIESC Journal, 2024, 75(4): 1616-1629. |
[11] | Baofeng WANG, Shugao WANG, Fangqin CHENG. Progress in preparation and CO2 adsorption properties of solid waste-based sulfur-doped porous carbon materials [J]. CIESC Journal, 2024, 75(2): 395-411. |
[12] | Fan WU, Xudong PENG, Jinbo JIANG, Xiangkai MENG, Yangyang LIANG. Study on adaptability of molecular dynamics in predicting density and viscosity of natural gas [J]. CIESC Journal, 2024, 75(2): 450-462. |
[13] | Qi LIU, Zikang CHEN, Yu PIAO, Peng XIAO, Yafen GE, Yanjun GONG. Zeolite catalysts for catalytic cracking of hydrocarbon to increase light olefins selectivity [J]. CIESC Journal, 2024, 75(1): 120-137. |
[14] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[15] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 232
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 150
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||